Skip to main content
Log in

Diatomic Pd catalyst with conjugated backbone for synergistic electrochemical CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Double-site catalysts have attracted widespread attention in the field of electrocatalysis due to their high metal loading, adjustable active centres, and electronic valence states. However, the development of bimetallic sites catalysts that coordinate with definite atoms is still in the exploratory stage. Here, we designed and synthesized a bimetallic palladium complex (BPB-Pd2) with conjugated backbone. The supported BPB-Pd2 was applied to electrochemical CO2 reduction reaction (CO2RR) for the first time. The as-obtained BPB-Pd2 gives an exceptional Faradaic efficiency of CO (FECO) of 94.4% at −0.80 V vs. reversible hydrogen electrode (RHE), which is significantly superior to monoatomic palladium catalyst (BPB-Pd1). The density functional theory (DFT) calculations revealed that the essential reason for the outstanding activity of BPB-Pd2 toward CO2RR was that the electronic effect between diatomic palladium reduces the free energy change for CO2RR process. Thus, BPB-Pd2 exhibits moderate free energy change to form COOH* intermediate, which was beneficial for the generation of CO in CO2RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 2016, 116, 11840–11876.

    Article  PubMed  Google Scholar 

  2. Gong, M. Y.; Cao, C. S.; Zhu, Q. L. Paired electrosynthesis design strategy for sustainable CO2 conversion and product upgrading. EnergyChem 2023, 5, 100111.

    Article  CAS  Google Scholar 

  3. Zhao, R. Y.; Wang, T.; Li, J. J.; Shi, Y. X.; Hou, M.; Yang, Y.; Zhang, Z. C.; Lei, S. B. Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Nano Res. 2023, 16, 8570–8595.

    Article  ADS  CAS  Google Scholar 

  4. Gao, Z. Q.; Gong, Y.; Zhu, Y. T.; Li, J. J.; Li, L.; Shi, Y. X.; Hou, M.; Gao, X. J.; Zhang, Z. C.; Hu, W. P. Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2. Nano Res. 2023, 16, 8743–8750.

    Article  ADS  CAS  Google Scholar 

  5. Han, S. G.; Zhang, M.; Fu, Z. H.; Zheng, L. R.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Enzyme-inspired microenvironment engineering of a single-molecular heterojunction for promoting concerted electrochemical CO2 reduction. Adv. Mater. 2022, 34, 2202830.

    Article  CAS  Google Scholar 

  6. Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

    Article  CAS  Google Scholar 

  7. Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

    Article  ADS  CAS  Google Scholar 

  8. Peng, J. X.; Yang, W. J.; Jia, Z. H.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022, 15, 10063–10069.

    Article  ADS  CAS  Google Scholar 

  9. Li, S.; Xu, Y. X.; Wang, H. W.; Teng, B. T.; Liu, Q.; Li, Q. H.; Xu, L. L.; Liu, X. Y.; Lu, J. L. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem., Int. Ed. 2023, 62, e202218167.

    Article  CAS  Google Scholar 

  10. Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J. J.; Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

    Article  CAS  Google Scholar 

  11. Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

    Article  CAS  Google Scholar 

  12. He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

    Article  CAS  Google Scholar 

  13. Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

    Article  CAS  Google Scholar 

  14. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    Article  CAS  Google Scholar 

  15. Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He, G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.

    Article  CAS  Google Scholar 

  16. Zhao, X. Y.; Zhao, K.; Liu, Y. M.; Su, Y.; Chen, S.; Yu, H. T.; Quan, X. Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe-Fe catalyst. ACS Catal. 2022, 12, 11412–11420.

    Article  Google Scholar 

  17. Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Enviorn., 2020, 268, 118747.

    Article  CAS  Google Scholar 

  18. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    Article  CAS  Google Scholar 

  19. Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

    Article  CAS  Google Scholar 

  20. Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7382–7388.

    Article  CAS  Google Scholar 

  21. Feng, M. M.; Wu, X. M.; Cheng, H. Y.; Fan, Z. H.; Li, X. C.; Cui, F. J.; Fan, S.; Dai, Y.; Lei, G. P.; He, G. H. Wen-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 2021, 9, 23817–23827.

    Article  CAS  Google Scholar 

  22. Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313–315.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Machan, C. W.; Yin, J.; Chabolla, S. A.; Gilson, M. K.; Kubiak, C. P. Improving the efficiency and activity of electrocatalysts for the reduction of CO2 through supramolecular assembly with amino acid-modified ligands. J. Am. Chem. Soc. 2016, 138, 8184–8193.

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.

    Article  CAS  Google Scholar 

  25. Guo, Z. G.; Chen, G.; Cometto, C.; Ma, B.; Zhao, H. Y.; Groizard, T.; Chen, L. J.; Fan, H. B.; Man, W. L.; Yiu, S. M. et al. Selectivity control of CO versus HCOO production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2019, 2, 801–808.

    Article  CAS  Google Scholar 

  26. Zhang, C. J.; Gotico, P.; Guillot, R.; Dragoe, D.; Leibl, W.; Halime, Z.; Aukauloo, A. Bio-inspired bimetallic cooperativity through a hydrogen bonding spacer in CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202214665.

  27. Hu, M. K.; Wang, N.; Ma, D. D.; Zhu, Q. L. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res. 2022, 15, 10070–10077.

    Article  ADS  CAS  Google Scholar 

  28. Reddu, V.; Sun, L. B.; Li, X. G.; Jin, H. L.; Wang, S.; Wang, X. Highly selective and efficient electroreduction of CO2 in water by quaterpyridine derivative-based molecular catalyst noncovalently tethered to carbon nanotubes. SmartMat 2022, 3, 151–162.

    Article  CAS  Google Scholar 

  29. Jung, M.; Suzaki, Y.; Saito, T.; Shimada, K.; Osakada, K. Pd complexes with trans-chelating ligands composed of two pyridyl groups and rigid π-conjugated backbone. Polyhedron 2012, 40, 168–174.

    Article  CAS  Google Scholar 

  30. Li, Y. R.; Wang, Z. W.; Xia, T.; Ju, H. X.; Zhang, K.; Long, R.; Xu, Q.; Wang, C. M.; Song, L.; Zhu, J. F. et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 2016, 28, 6959–6965.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, Q. Y.; Liu, H.; Zhao, Y. J.; Chen, S. Q.; Xue, B.; Kan, X. N.; Huang, X. W.; Liu, J.; Li, Z. B. Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Appl. Mater. Interfaces 2019, 11, 2740–2744.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

    Article  CAS  Google Scholar 

  33. Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

    Article  CAS  PubMed  Google Scholar 

  34. Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.

    Article  Google Scholar 

  35. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    Article  CAS  Google Scholar 

  36. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Article  Google Scholar 

  37. Xu, W. C.; Fan, G. L.; Chen, J. L.; Li, J. H.; Zhang, L.; Zhu, S. L.; Su, X. C.; Cheng, F. Y.; Chen, J. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem., Int. Ed. 2020, 59, 3511–3516.

    Article  CAS  Google Scholar 

  38. Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 2022, 3, 685–694.

    Article  CAS  Google Scholar 

  39. Costentin, C.; Savéant, J. M. Heterogeneous molecular catalysis of electrochemical reactions: Volcano plots and catalytic Tafel plots. ACS Appl. Mater. Interfaces 2017, 9, 19894–19899.

    Article  CAS  PubMed  Google Scholar 

  40. Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.

    Article  ADS  PubMed  Google Scholar 

  41. Ojha, K.; Doblhoff-Dier, K.; Koper, M. T. M. Double-layer structure of the Pt (111)–aqueous electrolyte interface. Proc. Natl. Acad. Sci. USA 2022, 119, e2116016119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  ADS  CAS  Google Scholar 

  43. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  44. Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22275139) and Natural Science Foundation of Tianjin (No. 22JCZDJC00510).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjuan Wang or Wen Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, M., Wang, H. et al. Diatomic Pd catalyst with conjugated backbone for synergistic electrochemical CO2 reduction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6458-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6458-z

Keywords

Navigation