Skip to main content
Log in

Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrochemical nitrate reduction reaction (NO3RR) to ammonia under ambient conditions is a promising approach for addressing elevated nitrate levels in water bodies, but the progress of this reaction is impeded by the complex series of chemical reactions involving electron and proton transfer and competing hydrogen evolution reaction. Therefore, it becomes imperative to develop an electro-catalyst that exhibits exceptional efficiency and remarkable selectivity for ammonia synthesis while maintaining long-term stability. Herein the magnetic biochar (Fe-C) has been synthesized by a two-step mechanochemical route after a pyrolysis treatment (450, 700, and 1000 °C), which not only significantly decreases the particle size, but also exposes more oxygen-rich functional groups on the surface, promoting the adsorption of nitrate and water and accelerating electron transfer to convert it into ammonia. Results showed that the catalyst (Fe-C-700) has an impressive NH3 production rate of 3.5 mol·h−1·gcat−1, high Faradaic efficiency of 88%, and current density of 0.37 A·cm−2 at 0.8 V vs. reversible hydrogen electrode (RHE). In-situ Fourier transform infrared spectroscopy (FTIR) is used to investigate the reaction intermediate and to monitor the reaction. The oxygen functionalities on the catalyst surface activate nitrate ions to form various intermediates (NO2, NO, NH2OH, and NH2) and reduce the rate determining step energy barrier (*NO3 → *NO2). This study presents a novel approach for the use of magnetic biochar as an electro-catalyst in NO3RR and opens the road for solving environmental and energy challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B: Environ. 2022, 310, 121346.

    Article  CAS  Google Scholar 

  2. Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

    Article  CAS  ADS  Google Scholar 

  4. Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Zhang, X. L.; Sun, C. H.; Li, H. T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709.

    Article  CAS  Google Scholar 

  5. Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

    Article  CAS  ADS  Google Scholar 

  6. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    Article  CAS  Google Scholar 

  7. Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

    Article  CAS  ADS  Google Scholar 

  8. Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

    Article  CAS  Google Scholar 

  9. Liu, C. W.; Hao, D.; Ye, J.; Ye, S.; Zhou, F. L.; Xie, H. B.; Qin, G. W.; Xu, J. T.; Liu, J.; Li, S. et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis. Adv. Energy Mater. 2023, 13, 2204126.

    Article  CAS  Google Scholar 

  10. Wang, T. Y.; Guo, Z. Y.; Zhang, X. L.; Li, Q. Y.; Yu, A. M.; Wu, C. Z.; Sun, C. H. Recent progress of iron-based electrocatalysts for nitrogen reduction reaction. J. Mater. Sci. Technol. 2023, 140, 121–134.

    Article  CAS  Google Scholar 

  11. Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

    Article  CAS  ADS  Google Scholar 

  12. Liu, N. Y.; Wu, R. Q.; Liu, Y. X.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Du, Y. C.; Cheng, Y. Y.; Zhuang, Z. C.; Kang, Z. H. et al. Oxygen vacancy engineering of Fe-doped NiMoO4 for electrocatalytic N2 fixation to NH3. Inorg. Chem. 2023, 62, 11990–12000.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Geioushy, R. A.; Li, Y. X.; Liu, Y. X.; Zhou, F. L.; Li, H. T.; Sun, C. H. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 2021, 16, 53503.

    Article  ADS  Google Scholar 

  14. Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

    Article  CAS  Google Scholar 

  15. Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

    Article  CAS  PubMed  Google Scholar 

  16. Mcenaney, J. M.; Blair, S. J.; Nielander, A. C.; Schwalbe, J. A.; Koshy, D. M.; Cargnello, M.; Jaramillo, T. F. Elcctrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustain. Chem. Eng. 2020, 8, 2672–2681.

    Article  CAS  Google Scholar 

  17. He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Zhang, Y.; Liu, Y. L.; Yu, Q.; Zhang, Q. K.; Si, Z. B.; Li, H. T.; Xu, H. Direct reduction of diluted CO2 gas to C2 products by copper hydroxyphosphate microrods. AIChE J. 2023, 69, e18233.

    Article  CAS  ADS  Google Scholar 

  19. Sun, P. P.; Chen, Z. G.; Zhang, J. Y.; Wu, G. Y.; Song, Y. H.; Miao, Z. H.; Zhong, K.; Huang, L.; Mo, Z.; Xu, H. Simultaneously tuning electronic reaction pathway and photoactivity of P, O modified cyano-rich carbon nitride enhances the photosynthesis of H2O2. Appl. Catal. B: Environ. 2024, 342, 123337.

    Article  CAS  Google Scholar 

  20. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

    Article  CAS  Google Scholar 

  22. Wu, Q. L.; Sun, Y.; Zhao, Q.; Li, H.; Ju, Z. N.; Wang, Y.; Sun, X. D.; Jia, B. H.; Qiu, J. S.; Ma, T. Y. Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants. Nano Res. 2023, 16, 4574–4581.

    Article  CAS  ADS  Google Scholar 

  23. He, X.; Li, X. H.; Fan, X. Y.; Li, J.; Zhao, D. L.; Zhang, L. C.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Xie, L. S. et al. Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets. ACS Appl. Nano Mater. 2022, 5, 14246–14250.

    Article  CAS  Google Scholar 

  24. Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

    Article  CAS  Google Scholar 

  27. Zhou, Y. Y.; Duan, R. Z.; Li, H.; Zhao, M.; Ding, C. M.; Li, C. Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal. 2023, 13, 10846–10854.

    Article  CAS  Google Scholar 

  28. Zhuang, C. Q.; Li, W. M.; Zhang, T. Y.; Li, J. T.; Zhang, Y. H.; Chen, G.; Li, H. T.; Kang, Z. H.; Zou, J.; Han, X. D. Monodispersed aluminum in carbon nitride creates highly efficient nitrogen active sites for ultra-high hydrogen peroxide photoproduction. Nano Energy 2023, 108, 108225.

    Article  CAS  Google Scholar 

  29. Li, Y. L.; Zhuang, C. Q.; Qiu, S.; Gao, J. F.; Zhou, Q.; Sun, Z. C.; Kang, Z. H.; Han, X. D. Cs-Cu- Cl perovskite quantum dots for photocatalytic H2 evolution with super-high stability. Appl. Catal. B: Environ. 2023, 337, 122881.

    Article  CAS  Google Scholar 

  30. Xie, M. H.; Tang, S. S.; Li, Z.; Wang, M. Y.; Jin, Z. Y.; Li, P. P.; Zhan, X.; Zhou, H.; Yu, G. H. Intermetallic single-atom alloy In-Pd bimetallene for neutral electrosynthesis of ammonia from nitrate. J. Am. Chem. Soc. 2023, 145, 13957–13967.

    Article  CAS  PubMed  Google Scholar 

  31. Fan, X. Y.; Liu, C. Z.; Li, Z. X.; Cai, Z. W.; Ouyang, L.; Li, Z. R.; He, X.; Luo, Y. S.; Zheng, D. D.; Sun, S. J. et al. Pd-doped Co3O4 nanoarray for efficient eight-electron nitrate electrocatalytic reduction to ammonia synthesis. Small 2023, 19, 2303424.

    Article  CAS  Google Scholar 

  32. Wang, Y. B.; Qin, Y. T.; Li, W.; Wang, Y. T.; Zhu, L. N.; Zhao, M. T.; Yu, Y. F. Controllable NO release for catheter antibacteria from nitrite electroreduction over the Cu-MOF. Trans. Tianjin Univ. 2023, 29, 275–283.

    Article  CAS  Google Scholar 

  33. He, X.; Li, Z. X.; Yao, J.; Dong, K.; Li, X. H.; Hu, L.; Sun, S. J.; Cai, Z. W.; Zheng, D. D.; Luo, Y. S. et al. High-efficiency electrocatalytic nitrite reduction toward ammonia synthesis on CoP@TiO2 nanoribbon array. iScience 2023, 26, 107100.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Ma, G. Y.; Sun, F.; Qiao, L.; Shen, Q. L.; Wang, L.; Tang, Q.; Tang, Z. H. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872.

    Article  CAS  ADS  Google Scholar 

  35. Fan, X. Y.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Li, J.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 2023, 19, 2208036.

    Article  CAS  Google Scholar 

  36. Zhang, Z. J.; Liu, Y.; Su, X. Z.; Zhao, Z. W.; Mo, Z. K.; Wang, C. Y.; Zhao, Y. L.; Chen, Y.; Gao, S. Y. Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res. 2023, 16, 6632–6641.

    Article  CAS  ADS  Google Scholar 

  37. Ouyang, L.; Liang, J.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Liu, Q.; Hamdy, M. S.; Sun, X. P.; Ying, B. W. Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 2023, 50, 6–44.

    Article  CAS  Google Scholar 

  38. Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

    Article  CAS  Google Scholar 

  39. Song, W.; Yue, L. C.; Fan, X. Y.; Luo, Y. S.; Ying, B. W.; Sun, S. J.; Zheng, D. D.; Liu, Q.; Hamdy, M. S.; Sun, X. P. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 2023, 10, 3489–3514.

    Article  CAS  Google Scholar 

  40. Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.

    Article  CAS  ADS  Google Scholar 

  41. Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

    Article  CAS  Google Scholar 

  42. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  43. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  44. Xu, J. W.; Zhang, S. B.; Liu, H. J.; Liu, S.; Yuan, Y.; Meng, Y. H.; Wang, M. M.; Shen, C. Y.; Peng, Q.; Chen, J. H. et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2023, 62, e202308044.

    Article  CAS  Google Scholar 

  45. Zhang, S.; Wu, J. H.; Zheng, M. T.; Jin, X.; Shen, Z. H.; Li, Z. H.; Wang, Y. J.; Wang, Q.; Wang, X. B.; Wei, H. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  ADS  Google Scholar 

  47. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  ADS  Google Scholar 

  48. Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

    Article  CAS  ADS  Google Scholar 

  49. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  50. Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. N.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 2023, 16, 4381–4398.

    Article  CAS  ADS  Google Scholar 

  51. Luo, H. X.; Li, S. J.; Wu, Z. Y.; Liu, Y. B.; Luo, W.; Li, W.; Zhang, D. Q.; Chen, J.; Yang, J. P. Modulating the active hydrogen adsorption on Fe–N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv. Mater. 2023, 35, 2304695.

    Article  CAS  Google Scholar 

  52. Zhao, X. Y.; Jiang, Y. Z.; Wang, M. F.; Liu, S. S.; Wang, Z. C.; Qian, T.; Yan, C. L. Optimizing intermediate adsorption via heteroatom ensemble effect over RuFe bimetallic alloy for enhanced nitrate electroreduction to ammonia. Adv. Energy Mater. 2023, 13, 2301409.

    Article  CAS  Google Scholar 

  53. Xian, J. H.; Li, S. S.; Su, H.; Liao, P. S.; Wang, S. H.; Xiang, R. N.; Zhang, Y. W.; Liu, Q. H.; Li, G. Q. Electrosynthesis of α-amino acids from NO and other NOx species over CoFe alloy-decorated self-standing carbon fiber membranes. Angew. Chem., Int. Ed. 2023, 62, e202306726.

    Article  CAS  Google Scholar 

  54. Hao, R.; Fang, S. S.; Tian, L.; Xia, R. L.; Guan, Q. X.; Jiao, L. F.; Liu, Y. P.; Li, W. Elucidation of the electrocatalytic activity origin of Fe3C species and application in the NOx full conversion to valuable ammonia. Chem. Eng. J. 2023, 467, 143371.

    Article  CAS  Google Scholar 

  55. Wang, J.; Wang, Y. A.; Cai, C.; Liu, Y. S.; Wu, D. J.; Wang, M. Y.; Li, M. H.; Wei, X. B.; Shao, M. H.; Gu, M. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Lett. 2023, 23, 1897–1903.

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Akram, M. A.; Zhu, B. T.; Cai, J. H.; Qin, S. B.; Hou, X. D.; Jin, P.; Wang, F.; He, Y. P.; Li, X. H.; Feng, L. Hierarchical nanospheres with polycrystalline Ir&Cu and amorphous Cu2O toward energy-efficient nitrate electrolysis to ammonia. Small 2023, 19, 2206966.

    Article  CAS  Google Scholar 

  57. Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe–V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537.

    Article  CAS  Google Scholar 

  58. Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. N-doped carbon–iron heterointerfaces for boosted electrocatalytic active and selective ammonia production. Proc. Natl. Acad. Sci. USA 2023, 120, e2207080119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2023, 62, e202217071.

    Article  CAS  Google Scholar 

  60. Reichle, S.; Felderhoff, M.; Schüth, F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angew. Chem., Int. Ed. 2021, 60, 26385–26389.

    Article  CAS  Google Scholar 

  61. Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

    Article  CAS  Google Scholar 

  62. Xia, H. S.; Wang, Z. H. Piezoelectricity drives organic synthesis. Science 2019, 366, 1451–1452.

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Kubota, K.; Pang, Y. D.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500–1504.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical- tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 2023, 3, 100477.

    Article  CAS  Google Scholar 

  65. Yan, N. N.; Hu, B.; Zheng, Z. Y.; Lu, H. Y.; Chen, J. W.; Zhang, X. M.; Jiang, X. Z.; Wu, Y. H.; Dolfing, J.; Xu, L. Twice-milled magnetic biochar: A recyclable material for efficient removal of methylene blue from wastewater. Bioresour. Technol. 2023, 372, 128663.

    Article  CAS  PubMed  Google Scholar 

  66. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  67. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Long, Y. D.; Lin, J. G.; Ye, F. H.; Liu, W.; Wang, D.; Cheng, Q. Q.; Paul, R.; Cheng, D. J.; Mao, B. G.; Yan, R. Q. et al. Tailoring the atomic-local environment of carbon nanotube tips for selective H2O2 electrosynthesis at high current densities. Adv. Mater. 2023, 35, 2303905.

    Article  CAS  Google Scholar 

  69. Wang, L. J.; Liu, F. H.; Pal, A.; Ning, Y. S.; Wang, Z.; Zhao, B. Y.; Bradley, R.; Wu, W. P. Ultra-small Fe3O4 nanoparticles encapsulated in hollow porous carbon nanocapsules for high performance supercapacitors. Carbon 2021, 179, 327–336.

    Article  CAS  Google Scholar 

  70. Ren, Y. W.; Yu, C.; Wang, L. S.; Tan, X. Y.; Wang, Z.; Wei, Q. B.; Zhang, Y. F.; Qiu, J. S. Microscopic- level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system. J. Am. Chem. Soc. 2022, 144, 10193–10200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52072152 and 51802126), the Jiangsu University Jinshan Professor Fund, the Jiangsu Specially-Appointed Professor Fund, Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials, Zhenjiang “Jinshan Talents” Project 2021, China PostDoctoral Science Foundation (No. 2022M721372), “Doctor of Entrepreneurship and Innovation” in Jiangsu Province (No. JSSCBS20221197), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_3645), the National Natural Science Foundation of China (No. 22208134), and Jiangsu Agricultural Science and Technology Innovation Fund (No. CX(21)1010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naiyun Liu, Nina Yan, Lei Xu or Haitao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zheng, Z., Jabeen, S. et al. Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6478-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6478-8

Keywords

Navigation