Skip to main content
Log in

Modulating redox transition kinetics by anion regulation in Ni−Fe−X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

NiFe-based electrocatalysts will experience dynamical surface reconstruction during oxygen evolution reaction (OER) process, and the derived metal (oxy)hydroxide hybrids on the surface have been considered as the actual active species for OER. Tremendous efforts have been dedicated to understanding the surface reconstruction, but there is rare research on recognizing the origin of improved performance derived from anion species of substrate. Herein, the OER electrocatalytic characteristics were tuned with different anions in NiFe-based catalyst, using NiFe-based oxides/nitride/sulfide/selenides/phosphides (NiFeX, X = O, N, S, Se, and P) as the model materials. The combination of X-ray photoelectronic spectroscopy, electrochemical tests, operando spectroscopic characterizations, and density functional theory (DFT) calculations, reveals that anion with lower electronegativity in NiFe-based catalyst leads to higher conductivity and delayed valence transition of Ni sites, as well as optimized adsorption behavior towards oxygen intermediates, contributing to enhanced OER performance. Accordingly, NiFeP electrocatalyst demonstrates an ultralow overpotential of 265 mV at 20 mA·cm−2 for OER, as well as long-term stability. This work not only offers further insights into the effect of anionic electronegativity on the intrinsic OER electrocatalytic properties of NiFe-based electrocatalyst but also provides guide to design efficient non-noble metal-based electrocatalysts for water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J. W.; Lee, J. S. Toward practical solar hydrogen production-An artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971.

    Article  CAS  PubMed  Google Scholar 

  2. Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S. H.; Teng, C. P.; Han, M. Y. Recent progress in energy-driven water splitting. Adv. Sci. (Weinh.) 2017, 4, 1600337.

    PubMed  PubMed Central  Google Scholar 

  3. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  PubMed  Google Scholar 

  4. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  PubMed  Google Scholar 

  5. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  PubMed  Google Scholar 

  6. Wei, L. T.; Du, M. Y.; Zhao, R.; Lv, F.; Li, L. B.; Zhang, L.; Zhou, D.; Su, J. Z. High-valence Mo doping for highly promoted water oxidation of NiFe (oxy)hydroxide. J. Mater. Chem. A 2022, 10, 23790–23798.

    Article  CAS  Google Scholar 

  7. Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

    Article  CAS  Google Scholar 

  8. Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208.

    Article  CAS  Google Scholar 

  9. Wei, L. T.; Du, M. Y.; Zhao, R.; Zhang, Y.; Zhang, L.; Li, L. B.; Yang, S. Y.; Su, J. Z. Active sites engineering on FeNi alloy/Cr3C2 heterostructure for superior oxygen evolution activity. J. Colloid Interface Sci. 2024, 653, 1075–1084.

    Article  CAS  PubMed  Google Scholar 

  10. Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

    Article  CAS  Google Scholar 

  11. Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  PubMed  Google Scholar 

  12. He, Z. X.; Liu, X. K.; Zhang, M. H.; Guo, L.; Ajmal, M.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Zou, J. J. Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 2023, 85, 570–580.

    Article  CAS  Google Scholar 

  13. Zhang, R. R.; Guo, B. B.; Pan, L.; Huang, Z. F.; Shi, C. X.; Zhang, X. W.; Zou, J. J. Metal-oxoacid-mediated oxyhydroxide with proton acceptor to break adsorption energy scaling relation for efficient oxygen evolution. J. Energy Chem. 2023, 80, 594–602.

    Article  CAS  Google Scholar 

  14. Chen, S. Y.; Zhang, S. S.; Guo, L.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Yang, G. D.; Zou, J. J. Reconstructed Ir−O−Mo species with strong Brønsted acidity for acidic water oxidation. Nat. Commun. 2023, 14, 4127.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.

    Article  CAS  Google Scholar 

  16. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380–5387.

    Article  CAS  Google Scholar 

  18. Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

    Article  CAS  Google Scholar 

  19. Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z. Bigger is surprisingly better: Agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1800047.

    Article  Google Scholar 

  20. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  CAS  PubMed  Google Scholar 

  21. Li, B. Q.; Zhang, S. Y.; Tang, C.; Cui, X. Y.; Zhang, Q. Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation. Small 2017, 13, 1700610.

    Article  Google Scholar 

  22. Zheng, X. R.; Cao, Y. H.; Wu, Z.; Ding, W. L.; Xue, T.; Wang, J. J.; Chen, Z. L.; Han, X. P.; Deng, Y. D.; Hu, W. B. Rational design and spontaneous sulfurization of NiCo-(oxy)hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv. Energy Mater. 2022, 12, 2103275.

    Article  CAS  Google Scholar 

  23. Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

    Article  CAS  Google Scholar 

  24. Du, C.; Li, P.; Zhuang, Z. H.; Fang, Z. Y.; He, S. J.; Feng, L. G.; Chen, W. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis. Coord. Chem. Rev. 2022, 466, 214604.

    Article  CAS  Google Scholar 

  25. Yan, P.; Liu, Q.; Zhang, H.; Qiu, L. C.; Wu, H. B.; Yu, X. Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594.

    Article  CAS  Google Scholar 

  26. Feng, Y.; Yu, X. Y.; Paik, U. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 2016, 52, 6269–6272.

    Article  CAS  Google Scholar 

  27. Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. 2015, 127, 5421–5425.

    Article  ADS  Google Scholar 

  28. Zhang, G. X.; Li, Y. L.; Xiao, X.; Shan, Y.; Bai, Y.; Xue, H. G.; Pang, H.; Tian, Z. Q.; Xu, Q. In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021, 21, 3016–3025

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, W.; Zhao, Y. Y.; Malgras, V.; Ji, Q. M.; Jiang, D. M.; Qi, R. J.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J. S. et al. Synthesis of monocrystalline nanoframes of prussian blue analogues by controlled preferential etching. Angew. Chem., Int. Ed. 2016, 55, 8228–8234.

    Article  CAS  Google Scholar 

  31. Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni−Co−A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

    Article  CAS  PubMed  Google Scholar 

  32. Ma, Y. M.; He, Z. D.; Wu, Z. F.; Zhang, B.; Zhang, Y.; Ding, S. J.; Xiao, C. H. Galvanic-replacement mediated synthesis of copper-nickel nitrides as electrocatalyst for hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24850–24858.

    Article  CAS  Google Scholar 

  33. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  CAS  PubMed  Google Scholar 

  34. He, W. J.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q. Y.; Liu, H.; Zhao, J. L.; Xin, H. L. Super-hydrophilic microporous Ni(OH)x/Ni3S2 heterostructure electrocatalyst for large-current-density hydrogen evolution. Small 2023, 19, 2205719.

    Article  CAS  Google Scholar 

  35. Nai, J. W.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W. Formation of Ni−Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 2017, 29, 1703870.

    Article  Google Scholar 

  36. Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

    Article  CAS  Google Scholar 

  37. Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Qu, D. Y.; Wang, G. W.; Kafle, J.; Harris, J.; Crain, L.; Jin, Z. H.; Zheng, D. Electrochemical Impedance and its applications in energy-storage systems. Small Methods 2018, 2, 1700342.

    Article  Google Scholar 

  39. Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

    Article  Google Scholar 

  40. Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Retracted: Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a Zinc-Air battery. Adv. Mater. 2018, 30, 1705796.

    Article  Google Scholar 

  41. Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Article  Google Scholar 

  42. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni−Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

    Article  ADS  CAS  Google Scholar 

  44. Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.

    Article  CAS  Google Scholar 

  45. Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335–4342.

    Article  CAS  Google Scholar 

  46. Dastafkan, K.; Wang, S. H.; Rong, C. L.; Meyer, Q.; Li, Y. B.; Zhang, Q.; Zhao, C. Cosynergistic molybdate oxo-anionic modification of FeNi-based electrocatalysts for efficient oxygen evolution reaction. Adv. Funct. Mater. 2022, 32, 2107342.

    Article  CAS  Google Scholar 

  47. Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

    Article  CAS  Google Scholar 

  48. Luo, R. P.; Qian, Z. Y.; Xing, L. X.; Du, C. Y.; Yin, G. P.; Zhao, S. L.; Du, L. Re-looking into the active moieties of metal X-ides (X- = phosph-, sulf-, nitr-, and carb-) toward oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2102918.

    Article  CAS  Google Scholar 

  49. Wang, C. S.; Yan, B.; Chen, Z. Z.; You, B.; Liao, T.; Zhang, Q.; Lu, Y. Z.; Jiang, S. H.; He, S. J. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 25773–25795.

    Article  CAS  Google Scholar 

  50. Wang, C. S.; Zhang, Q.; Yan, B.; You, B.; Zheng, J. J.; Feng, L.; Zhang, C. M.; Jiang, S. H.; Chen, W.; He, S. J. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 2023, 15, 52.

    Article  ADS  CAS  Google Scholar 

  51. Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ Sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

    Article  CAS  Google Scholar 

  52. Sun, Y.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, S. C.; Wang, X.; Xie, Y.; Ma, K. K.; Kang, Z.; Zhang, Y. Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. Energy Environ. Sci. 2022, 15, 633–644.

    Article  CAS  Google Scholar 

  53. Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

    Article  CAS  Google Scholar 

  54. Yang, H. Y.; Guo, P. F.; Wang, R. R.; Chen, Z. L.; Xu, H. B.; Pan, H. G.; Sun, D. L.; Fang, F.; Wu, R. B. Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 2022, 34, 2107548.

    Article  CAS  Google Scholar 

  55. Kosteck, R.; McLarnon, F. Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes: I. Pure nickel hydroxide. J. Electrochem. Soc. 1997, 144, 485–493.

    Article  ADS  Google Scholar 

  56. Diallo, A.; Beye, A. C.; Doyle, T. B.; Park, E.; Maaza, M. Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties. Green Chem. Lett. Rev. 2015, 8, 30–36.

    Article  CAS  Google Scholar 

  57. Bo, X.; Hocking, R. K.; Zhou, S.; Li, Y. B.; Chen, X. J.; Zhuang, J. C.; Du, Y.; Zhao, C. Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy Environ. Sci. 2020, 13, 4225–4237.

    Article  CAS  Google Scholar 

  58. Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni−Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51976169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhan Su.

Electronic Supplementary Material

12274_2023_6400_MOESM1_ESM.pdf

Modulating redox transition kinetics by anion regulation in Ni−Fe−X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Zhang, K., Zhao, R. et al. Modulating redox transition kinetics by anion regulation in Ni−Fe−X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation. Nano Res. (2024). https://doi.org/10.1007/s12274-023-6400-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-023-6400-9

Keywords

Navigation