Skip to main content
Log in

Graphene-anchored sodium single atoms: A highly active and stable catalyst for transesterification reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid strong base catalysts have received considerable attention in various organic reactions due to their facile separation, neglectable corrosion, and environmental friendliness. Although great progress has been made in the preparation of solid strong base catalysts, it is still challenging to avoid basic sites aggregation on support and active sites loss in reaction system. Here, we report a tandem redox strategy to prepare Na single atoms on graphene, producing a new kind of solid strong base catalyst (Na1/G). The base precursor NaNO3 was first reduced to Na2O by graphene (400 °C) and successively to single atoms Na anchored on the graphene vacancies (800 °C). Owing to the atomically dispersed of basicity, the resultant catalyst presents high activity toward the transesterification of methanol and ethylene carbonate to synthesize dimethyl carbonate (turnover frequency (TOF) value: 125.7 h−1), which is much better than the conventional counterpart Na2O/G and various reported solid strong bases (TOF: 1.0–90.1 h−1). Furthermore, thanks to the basicity anchored on graphene, the Na1/G catalyst shows excellent durability during cycling. This work may provide a new direction for the development of solid strong base catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

    Article  CAS  PubMed  Google Scholar 

  2. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  PubMed  Google Scholar 

  3. Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  ADS  CAS  Google Scholar 

  5. Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  ADS  CAS  Google Scholar 

  6. Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.

    Article  Google Scholar 

  7. Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129–8176.

    Article  CAS  PubMed  Google Scholar 

  8. Shao, X. B.; Nian, Y.; Peng, S. S.; Zhang, G. S.; Gu, M. X.; Han, Y.; Liu, X. Q.; Sun, L. B. Magnesium single-atom catalysts with superbasicity. Sci. China Chem. 2023, 66, 1737–1743.

    Article  CAS  Google Scholar 

  9. Peng, S. S.; Shao, X. B.; Li, Y. X.; Jiang, Y.; Gu, C.; Dinker, M. K.; Liu, X. Q.; Sun, L. B. Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Res. 2022, 15, 2905–2912.

    Article  ADS  CAS  Google Scholar 

  10. Peng, S. S.; Zhang, G. S.; Shao, X. B.; Gu, C.; Liu, X. Q.; Sun, L. B. Generation of strong basicity in metal-organic frameworks: How do coordination solvents matter. ACS Appl. Mater. Interfaces 2022, 14, 8058–8065.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, N.; Wu, Z. M.; Li, M.; Li, S. S.; Li, Y. F.; Yu, R. D.; Pan, L. S.; Liu, Y. J. A novel strategy for constructing mesoporous solid superbase catalysts: Bimetallic Al-La oxides supported on SBA-15 modified with KF. Catal. Sci. Technol. 2017, 7, 725–733.

    Article  CAS  Google Scholar 

  12. Li, T. T.; Sun, L. B.; Gong, L.; Liu, X. Y.; Liu, X. Q. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. J. Mol. Catal. A: Chem. 2012, 352, 38–44.

    Article  CAS  Google Scholar 

  13. Liu, X. Y.; Sun, L. B.; Lu, F.; Li, T. T.; Liu, X. Q. Constructing mesoporous solid superbases by a dualcoating strategy. J. Mater. Chem. A 2013, 1, 1623–1631.

    Article  CAS  Google Scholar 

  14. Peng, S. S.; Lu, J.; Li, T. T.; Tan, P.; Gu, C.; Wu, Z. Y.; Liu, X. Q.; Sun, L. B. Significant decrease in activation temperature for the generation of strong basicity: A strategy of endowing supports with reducibility. Inorg. Chem. 2019, 58, 8003–8011.

    Article  CAS  PubMed  Google Scholar 

  15. Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44, 5092–5147.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, G. Z.; Shi, S.; Liu, M.; Zhao, L.; Wang, M.; Zheng, X.; Gao, J.; Xu, J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Appl. Mater. Interfaces 2018, 10, 12612–12617.

    Article  CAS  PubMed  Google Scholar 

  17. Li, T. T.; Gao, X. J.; Qi, S. C.; Huang, L.; Peng, S. S.; Liu, W.; Liu, X. Q.; Sun, L. B. Potassium-incorporated mesoporous carbons: Strong solid bases with enhanced catalytic activity and stability. Catal. Sci. Technol. 2018, 8, 2794–2801.

    Article  CAS  Google Scholar 

  18. Liu, W.; Zhu, L.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Direct fabrication of strong basic sites on ordered nanoporous materials: Exploring the possibility of metal-organic frameworks. Chem. Mater. 2018, 30, 1686–1694.

    Article  ADS  CAS  Google Scholar 

  19. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    Article  CAS  Google Scholar 

  20. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  21. Zheng, H. R.; Wang, S. B.; Liu, S. J.; Wu, J.; Guan, J. P.; Li, Q.; Wang, Y. C.; Tao, Y.; Hu, S. Y.; Bai, Y. et al. The heterointerface between Fe1/NC and selenides boosts reversible oxygen electrocatalysis. Adv. Funct. Mater. 2023, 33, 2300815.

    Article  CAS  Google Scholar 

  22. Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

    Article  CAS  Google Scholar 

  23. Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. G.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759.

    Article  ADS  CAS  Google Scholar 

  24. Peng, S. S.; Shao, X. B.; Gu, M. X.; Zhang, G. S.; Gu, C.; Nian, Y.; Jia, Y. M.; Han, Y.; Liu, X. Q.; Sun, L. B. Catalytically stable potassium single-atom solid superbases. Angew. Chem., Int. Ed. 2022, 61, e202215157.

    Article  CAS  Google Scholar 

  25. Wang, Z.; Jin, X. Y.; Xu, R. J.; Yang, Z. B.; Ma, S. D.; Yan, T.; Zhu, C.; Fang, J.; Liu, Y. P.; Hwang, S. J. et al. Cooperation between dual metal atoms and nanoclusters enhances activity and stability for oxygen reduction and evolution. ACS Nano 2023, 17, 8622–8633.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Z. Y.; Wang, C. H.; Zhong, X.; Lei, H.; Li, J. W.; Ji, Y.; Liu, C. X.; Ding, M.; Dai, Y. Z.; Li, X. et al. Achieving efficient CO2 electrolysis to CO by local coordination manipulation of nickel single-atom catalysts. Nano Lett. 2023, 23, 7046–7053.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lian, X. Y.; Zhou, J. H.; You, Y. Z.; Tian, Z. N.; Yi, Y. Y.; Choi, J. H.; Rümmeli, M. H.; Sun, J. Y. Boosting K+ capacitive storage in dual-doped carbon crumples with B-N moiety via a general protic-salt synthetic strategy. Adv. Funct. Mater. 2022, 32, 2109969.

    Article  CAS  Google Scholar 

  28. Lu, Z. X.; Wang, J.; Feng, W. L.; Yin, X. P.; Feng, X. C.; Zhao, S. Y.; Li, C. X.; Wang, R. X.; Huang, Q. A.; Zhao, Y. F. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.

    Article  CAS  Google Scholar 

  29. Wang, B.; Zhu, X.; Pei, X. D.; Liu, W. G.; Leng, Y. C.; Yu, X. W.; Wang, C.; Hu, L. H.; Su, Q. M.; Wu, C. P. et al. Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 13788–13795.

    Article  CAS  PubMed  Google Scholar 

  30. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  Google Scholar 

  31. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  ADS  CAS  Google Scholar 

  32. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. 2017, 129, 7041–7045.

    Article  ADS  Google Scholar 

  35. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  PubMed  Google Scholar 

  36. Fang, G. Q.; Wei, F. F.; Lin, J.; Zhou, Y. L.; Sun, L.; Shang, X.; Lin, S.; Wang, X. D. Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J. Am. Chem. Soc. 2023, 145, 13169–13180.

    Article  CAS  PubMed  Google Scholar 

  37. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  38. Gan, T.; He, Q.; Zhang, H.; Xiao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

    Article  CAS  Google Scholar 

  39. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  ADS  CAS  Google Scholar 

  40. Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

    Article  CAS  Google Scholar 

  41. Chen, Y. X.; Gao, J. Y.; Huang, Z. W.; Zhou, M. J.; Chen, J. X.; Li, C.; Ma, Z.; Chen, J. M.; Tang, X. F. Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde. Environ. Sci. Technol. 2017, 51, 7084–7090.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wei, S. J.; Sun, Y. B.; Qiu, Y. Z.; Li, A.; Chiang, C. Y.; Xiao, H.; Qian, J. S; Li, Y. D. Self-carbon-thermal-reduction strategy for boosting the fenton-like activity of single Fe–N4 sites by carbon-defect engineering. Nat. Commun. 2023, 14, 7549.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Zhao, X. L.; Wu, G.; Zheng, X. S.; Jiang, P.; Yi, J. D.; Zhou, H.; Gao, X. P.; Yu, Z. Q.; Wu, Y. E. A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300879.

    Article  CAS  Google Scholar 

  45. Wu, Z. L.; Huang, B. K.; Wang, X. H.; He, C. S.; Liu, Y.; Du, Y.; Liu, W.; Xiong, Z. K.; Lai, B. Facilely tuning the first-shell coordination microenvironment in iron single-atom for Fenton-like chemistry toward highly efficient wastewater purification. Environ. Sci. Technol. 2023, 57, 14046–14057.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Wang, L. X.; Gao, X. P.; Wang, S. C.; Chen, C.; Song, J.; Ma, X. H.; Yao, T.; Zhou, H.; Wu, Y. E. Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 2023, 145, 13462–13468.

    Article  CAS  PubMed  Google Scholar 

  47. Hou, Z. Q.; Lu, Y.; Liu, Y. X.; Liu, N.; Hu, J. C.; Wei, L.; Li, Z. Y.; Tian, X. R.; Gao, R. Y.; Yu, X. H. et al. A general dual-metal nanocrystal dissociation strategy to generate robust high-temperature-stable alumina-supported single-atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869–15878.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, Q. Y.; Liu, K.; Fu, J. W.; Cai, C.; Li, H. J. W.; Long, Y.; Chen, S. Y.; Liu, B.; Li, H. M.; Li, W. Z. et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245.

    Article  CAS  Google Scholar 

  50. Ji, S. F.; Chen, Y. J.; Zhao, G. F.; Wang, Y.; Sun, W. M.; Zhang, Z. D.; Lu, Y.; Wang, D. S. Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Appl. Catal. B: Environ. 2022, 304, 120922.

    Article  CAS  Google Scholar 

  51. Lee, K. M.; Jang, J. H.; Balamurugan, M.; Kim, J. E.; Jo, Y. I.; Nam, K. T. Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate. Nat. Energy 2021, 6, 733–741.

    Article  ADS  CAS  Google Scholar 

  52. Pei, Y. L.; Quan, Y. H.; Wang, X. H.; Zhao, J. X.; Shi, R. N.; Li, Z.; Ren, J. Surface reconstruction induced highly efficient N-doped carbon nanosheet supported copper cluster catalysts for dimethyl carbonate synthesis. Appl. Catal. B: Environ 2022, 300, 120718.

    Article  CAS  Google Scholar 

  53. Li, L.; Liu, W. X.; Chen, R. H.; Shang, S.; Zhang, X. D.; Wang, H.; Zhang, H. J.; Ye, B. J.; Xie, Y. Atom-economical synthesis of dimethyl carbonate from CO2: Engineering reactive frustrated Lewis pairs on ceria with vacancy clusters. Angew. Chem., Int. Ed. 2022, 61, e202214490.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 22125804), the National Natural Science Foundation of China (Nos. 22078155 and 22178163), and the Jiangsu Funding Program for Excellent Postdoctoral Talent. We thank the BL08U1A beam station for XAFS measurements at Shanghai Synchrotron Radiation Facility (SSRF) and we are grateful to the High-Performance Computing Center of Nanjing Tech University for supporting the computational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Bing Sun.

Electronic supplementary material

12274_2024_6506_MOESM1_ESM.pdf

Electronic Supplementary Material: Graphene-anchored sodium single atoms: A highly active and stable catalyst for transesterification reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, SS., Nian, Y., Song, XR. et al. Graphene-anchored sodium single atoms: A highly active and stable catalyst for transesterification reaction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6506-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6506-8

Keywords

Navigation