Skip to main content
Log in

Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 29 February 2024

This article has been updated

Abstract

Reconstructing enzymatic active sites presents a significant challenge due to the intricacies involved in achieving enzyme-like scaffold folding and spatial arrangement of essential functional groups. There is also a growing interest in building biocatalytic networks, wherein multiple enzymatic active sites are localized within a single artificial system, allowing for cascaded transformations. In this work, we report the self-assembly of imidazole or its derivatives with fluorenylmethyloxycarbonyl-modified histidine and Cu2+ to fabricate a supramolecular catalyst, which possesses catechol oxidase-like dicopper center with multiple imidazole as the coordination sphere. Transmission electron microscopy, low-temperature X-band continuous-wave electron paramagnetic resonance, K-edge X-ray absorption spectra/the extended X-ray absorption fine structure analysis, and density functional theory modeling were used for the structural characterization of the catalyst. The phenol derivatives and the dissolved oxygen were used as the substrates, with the addition of 4-aminoantipyrine to generate a red adduct with a maximum absorbance at 510 nm, for obtaining time-dependent absorbance change curves and estimating the activities. The results reveal that the addition of imidazole synergistically accelerates the oxidative activity about 10-fold and the hydrolysis activity about 14-fold than fluorenylmethyloxycarbonyl modified-histidine/Cu2+. The supramolecular nanoassembly also exhibits the ability to catalyze oxidation/hydrolysis cascade reactions, converting 2′,7′-dichlorofluorescin diacetate into 2′,7′-dichlorofluorescein. This process can be regulated through the methylation of the imidazole component at various positions. This work may contribute to the design of advanced biomimetic catalysts, and shed light on early structural models of the active sites of the primitive copper-dependent enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Domínguez, L.; Sosa-Peinado, A.; Hansberg, W. Catalase evolved to concentrate H2O2 at its active site. Arch. Biochem. Biophys. 2010, 500, 82–91.

    Article  PubMed  Google Scholar 

  2. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 1996, 96, 2563–2606.

    Article  CAS  PubMed  Google Scholar 

  3. Yu, Z. C.; Tang, J.; Gong, H. X.; Gao, Y.; Zeng, Y. Y.; Tang, D. P.; Liu, X. L. Enzyme-encapsulated protein trap engineered metal-organic framework-derived biomineral probes for non-invasive prostate cancer surveillance. Adv. Funct. Mater. 2023, 33, 2301457.

    Article  CAS  Google Scholar 

  4. Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.

    Article  CAS  Google Scholar 

  5. Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615–621.

    Article  CAS  PubMed  Google Scholar 

  6. Shang, Y. S.; Liu, F. S.; Wang, Y. N.; Li, N.; Ding, B. Q. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 2020, 21, 2408–2418.

    Article  CAS  PubMed  Google Scholar 

  7. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  PubMed  Google Scholar 

  8. Adak, S.; Maity, M. L.; Bandyopadhyay, S. Photoresponsive small molecule enzyme mimics. ACS Omega 2022, 7, 35361–35370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Makam, P.; Yamijala, S. S. R. K. C.; Tao, K.; Shimon, L. J. W.; Eisenberg, D. S.; Sawaya, M. R.; Wong, B. M.; Gazit, E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat. Catal. 2019, 2, 977–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, S. W.; Zhang, M. S.; Jin, H.; Wang, Z.; Liu, Y.; Zhang, S. L.; Zhang, H. Iron-containing protein-mimic supramolecular iron delivery systems for ferroptosis tumor therapy. J. Am. Chem. Soc. 2023, 145, 160–170.

    Article  CAS  PubMed  Google Scholar 

  11. Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem., Int. Ed. 2011, 50, 114–137.

    Article  CAS  Google Scholar 

  12. Liu, Y. X.; Wang, Z. G. Heme-dependent supramolecular nanocatalysts: A review. ACS Nano 2023, 17, 13000–13016.

    Article  CAS  PubMed  Google Scholar 

  13. Wei, M.; Lee, J.; Xia, F.; Lin, P. H.; Hu, X.; Li, F. Y.; Ling, D. S. Chemical design of nanozymes for biomedical applications. Acta Biomater. 2021, 126, 15–30.

    Article  CAS  PubMed  Google Scholar 

  14. Solomon, E. I. Dioxygen binding, activation, and reduction to H2O by Cu enzymes. Inorg. Chem. 2016, 55, 6364–6375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, S. M.; Solomon, E. I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 2015, 72, 869–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Z. G.; Li, Y. Z.; Wang, H.; Wan, K. W.; Liu, Q.; Shi, X. H.; Ding, B. Q. Enzyme Mimic Based on a Self-Assembled chitosan/DNA hybrid exhibits superior activity and tolerance. Chem.-Eur. J. 2019, 25, 12576–12582.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Q.; Wang, H.; Shi, X. H.; Wang, Z. G.; Ding, B. Q. Self-assembled DNA/peptide-based nanoparticle exhibiting synergistic enzymatic activity. ACS Nano 2017, 11, 7251–7258.

    Article  CAS  PubMed  Google Scholar 

  18. Teng, Q.; Wu, H. F.; Sun, H.; Liu, Y. X.; Wang, H.; Wang, Z. G. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J. Colloid Interface Sci. 2022, 628, 1004–1011.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sun, H.; Wu, H. F.; Teng, Q.; Liu, Y. X.; Wang, H.; Wang, Z. G. Enzyme-mimicking materials from designed self-assembly of lysine-rich peptides and G-quadruplex DNA/hemin DNAzyme: Charge effect of the key residues on the catalytic functions. Biomacromolecules 2022, 23, 3469–3476.

    Article  CAS  PubMed  Google Scholar 

  20. Deepak, R. N. V. K.; Sankararamakrishnan, R. N-H⋯N hydrogen bonds involving histidine imidazole nitrogen atoms: A new structural role for histidine residues in proteins. Biochemistry 2016, 55, 3774–3783.

    Article  Google Scholar 

  21. Sundberg, R. J.; Martin, R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev. 1974, 74, 471–517.

    Article  CAS  Google Scholar 

  22. Perrotta, A. T.; Shih, I. H.; Been, M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 1999, 286, 123–126.

    Article  CAS  PubMed  Google Scholar 

  23. Holmquist, M. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr. Protein Pept. Sci. 2000, 1, 209–235.

    Article  CAS  PubMed  Google Scholar 

  24. Jencks, W. P. Imidazole and proton transfer in catalysis. Biochem. J. 1970, 117, 50p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heppner, D. E.; Kjaergaard, C. H.; Solomon, E. I. Molecular origin of rapid versus slow intramolecular electron transfer in the catalytic cycle of the multicopper oxidases. J. Am. Chem. Soc. 2013, 135, 12212–12215.

    Article  CAS  PubMed  Google Scholar 

  26. Berglund, G. I.; Carlsson, G. H.; Smith, A. T.; Szöke, H.; Henriksen, A.; Hajdu, J. The catalytic pathway of horseradish peroxidase at high resolution. Nature 2002, 417, 463–468.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Neuvonen, H. Kinetics and mechanisms of reactions of pyridines and imidazoles with phenyl acetates and trifluoroacetates in aqueous acetonitrile with low content of water: Nucleophilic and general base catalysis in ester hydrolysis. J. Chem. Soc., Perkin Trans. 1987, 159–167

  28. Koval, I. A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. Synthetic models of the active site of catechol oxidase: Mechanistic studies. Chem. Soc. Rev. 2006, 35, 814–840.

    Article  CAS  PubMed  Google Scholar 

  29. Supuran, C. T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032.

    Article  CAS  PubMed  Google Scholar 

  30. Solem, E.; Tuczek, F.; Decker, H. Tyrosinase versus catechol oxidase: One asparagine makes the difference. Angew. Chem., Int. Ed. 2016, 55, 2884–2888.

    Article  CAS  Google Scholar 

  31. Healey, R. D.; Couillaud, L.; Hoh, F.; Mouhand, A.; Fouillen, A.; Couvineau, P.; Granier, S.; Leyrat, C. Structure, dynamics and transferability of the metal-dependent polyhistidine tetramerization motif TetrHis for single-chain Fv antibodies. Commun. Chem. 2023, 6, 160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khare, E.; Grewal, D. S.; Buehler, M. J. Bond clusters control rupture force limit in shear loaded histidine-Ni2+ metal-coordinated proteins. Nanoscale 2023, 15, 8578–8588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yum, J. H.; Kumagai, T.; Hori, D.; Sugiyama, H.; Park, S. Histidine-DNA nanoarchitecture as laccase mimetic DNAzymes. Nanoscale 2023, 15, 10749–10754.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, X. W.; Luo, D.; Zhou, X. P.; Li, D. Imidazole-based metal-organic cages: Synthesis, structures, and functions. Coord. Chem. Rev. 2022, 455, 214354.

    Article  CAS  Google Scholar 

  35. Gugtapeh, H. S.; Rezaei, M. One-step electrodeposition of a mesoporous Ni/Co-imidazole-based bimetal-organic framework on pyramid-like NiSb with abundant coupling interfaces as an ultrastable heterostructural electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2023, 15, 34682–34697.

    Article  Google Scholar 

  36. Tang, C.; Ulijn, R. V.; Saiani, A. Effect of glycine substitution on fmoc-diphenylalanine self-assembly and gelation properties. Langmuir 2011, 27, 14438–14449.

    Article  CAS  PubMed  Google Scholar 

  37. Basavalingappa, V.; Bera, S.; Xue, B.; Azuri, I.; Tang, Y. M.; Tao, K.; Shimon, L. J. W.; Sawaya, M. R.; Kolusheva, S.; Eisenberg, D. S. et al. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat. Commun. 2019, 10, 5256.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets. Adv. Mater. 2008, 20, 37–41.

    Article  CAS  Google Scholar 

  39. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 14639–14646.

    Article  CAS  Google Scholar 

  41. Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V.. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 2006, 18, 611–614.

    Article  CAS  Google Scholar 

  43. Tao, K.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Optical property modulation of Fmoc group by pH-dependent self-assembly. RSC Adv. 2015, 5, 73914–73918.

    Article  ADS  CAS  Google Scholar 

  44. Carl, P. J.; Larsen, S. C. EPR study of copper-exchanged zeolites: Effects of correlated g-and A-strain, Si/Al ratio, and parent zeolite. J. Phys. Chem. B 2000, 104, 6568–6575.

    Article  CAS  Google Scholar 

  45. Kivelson, D.; Neiman, R. ESR studies on the bonding in copper complexes. J. Chem. Phys. 1961, 35, 149–155.

    Article  ADS  CAS  Google Scholar 

  46. Bonomo, R. P.; Riggi, F.; Bilio, A. J. D. EPR reinvestigation of the copper(II)-imidazole system. Inorg. Chem. 1988, 27, 2510–2512.

    Article  CAS  Google Scholar 

  47. Johannsen, S.; Korth, M. M. T.; Schnabl, J.; Sigel, R. K. O. Exploring metal ion coordination to nucleic acids by NMR. Chimia 2009, 63, 146.

    Article  CAS  Google Scholar 

  48. Maity, S.; Gundampati, R. K.; Kumar, T. K. S. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 2019, 14, 1934578X1984929.

    Google Scholar 

  49. Teilum, K.; Kunze, M. B. A.; Erlendsson, S.; Kragelund, B. B. (S)Pinning down protein interactions by NMR. Protein Sci. 2017, 26, 436–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 1987, 109, 6433–6442.

    Article  CAS  Google Scholar 

  51. Lee, S. K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc. 2002, 124, 6180–6193.

    Article  CAS  PubMed  Google Scholar 

  52. Hou, Y.; Qiu, M.; Kim, M.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M.; Yuan, C.; Lei, L.; Feng, X. L. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

    Article  CAS  Google Scholar 

  54. Makam, P.; Yamijala, S. S. R. K. C.; Bhadram, V. S.; Shimon, L. J. W.; Wong, B. M.; Gazit, E. Single amino acid bionanozyme for environmental remediation. Nat. Commun. 2022, 13, 1505.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem. 2020, 132, 14747–14754.

    Article  ADS  Google Scholar 

  56. Dou, J.; Lin, P.; Kuang, B. Y.; Yu, J. Z. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: Enhancement effects by pyridine, imidazole, and their derivatives. Environ. Sci. Technol. 2015, 49, 6457–6465.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Scheiner, S.; Yi, M. Y. Proton transfer properties of imidazole. J. Phys. Chem. 1996, 100, 9235–9241.

    Article  CAS  Google Scholar 

  58. Campomanes, P.; Rothlisberger, U.; Alfonso-Prieto, M.; Rovira, C. The molecular mechanism of the catalase-like activity in horseradish peroxidase. J. Am. Chem. Soc. 2015, 137, 11170–11178.

    Article  CAS  PubMed  Google Scholar 

  59. Clément, J. L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. Assignment of the EPR spectrum of 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct. J. Org. Chem. 2005, 70, 1198–1203.

    Article  PubMed  Google Scholar 

  60. Gutteridge, J. M. C.; Wilkins, S. Copper salt-dependent hydroxyl radical formation: Damage to proteins acting as antioxidants. Biochim. Biophys. Acta (BBA) - Gen. Subj. 1983, 759, 38–41.

    Article  CAS  Google Scholar 

  61. Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085.

    Article  CAS  PubMed  Google Scholar 

  62. Lengyel, Z.; Rufo, C. M.; Moroz, Y. S.; Makhlynets, O. V.; Korendovych, I. V. Copper-containing catalytic amyloids promote phosphoester hydrolysis and tandem reactions. ACS Catal. 2018, 8, 59–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52173194), Beijing Natural Science Foundation (No. 2232017), and Fundamental Research Funds for the Central Universities (No. buctrc201902). The theoretical simulations are supported by Hefei advanced computing center and high performance computing platform of BUCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Gang Wang.

Electronic supplementary material

12274_2024_6489_MOESM1_ESM.pdf

Electronic Supplementary Material: Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, W., Xu, S. et al. Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6489-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6489-5

Keywords

Navigation