Skip to main content
Log in

Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pt nanoparticles (PtNPs) as active species have always been considered as one of the best semiconductor materials for photocatalytic hydrogen production. In this study, a Schottky heterojunction has been successfully constructed by evenly loading ultrafine PtNPs onto a triazine-based covalent organic frameworks (COFs). This strategy maintained the high activity of these ultra-small PtNPs while maximizing the utilization of the Pt active sites. The fabricated PtNPs@covalent triazine-based framework-1 (CTF-1) composite accomplished a significantly high rate of hydrogen evolution (20.0 mmol·g−1·h−1, apparent quantum efficiency (AQE) = 7.6%, at λ = 450 nm) with 0.40 wt.% Pt loading, giving rise to a 44-fold-increase in the efficiency of the photocatalytic hydrogen production compared to the pristine CTF-1. Theoretical calculations revealed that the strong electron transfer (Q(Pt) = −0.726 qe, in the analysis of Bader charge, Q(Pt) is the charge quantity transferred from Pt cluster to CTF-1, and qe is the unit of charge transfer quantity) between PtNPs and CTF-1 triggers a strong interaction, which makes PtNPs being firmly attached to the structure of CTF-1, thereby enabling high stability and excellent hydrogen production efficiency. Importantly, the hydrogen binding free energy (ΔGH*) of PtNPs@CTF-1 is much lower than that of the unmodified CTF-1, leading to a much lower intermediate state and hence a significant improvement in photocatalytic performance. The overall findings of this work provide a new platform to incorporate metallic NPs into COFs for the design and fabrication of highly efficient photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar, A.; Krishnan, V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Adv. Funct. Mater. 2021, 31, 2009807.

    Article  CAS  Google Scholar 

  3. Yasuda, M.; Matsumoto, T.; Yamashita, T. Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides. Renew. Sustain. Energy Rev. 2018, 81, 1627–1635.

    Article  CAS  Google Scholar 

  4. Yin, L. Y.; Zhao, Y. N.; Xing, Y. M.; Tan, H. Q.; Lang, Z. L.; Ho, W.; Wang, Y. H.; Li, Y. G. Srructure–property relationship in β-keto-enamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. Chem. Eng. J. 2021, 419, 129984.

    Article  CAS  Google Scholar 

  5. Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z.; Zi, J. Z.; Luan, X.; Zhong, Y. Q.; Qu, M. H.; Wang, Y. Z.; Lian, Z. C. Localized surface plasmon resonance promotes metal-organic framework-based photocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2303069.

    Article  CAS  Google Scholar 

  7. Dao, D. Q.; Anh Nguyen, T. K.; Kang, S. G.; Shin, E. W. Engineering oxidation states of a platinum cocatalyst over chemically oxidized graphitic carbon nitride photocatalysts for photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 2021, 9, 14537–14549.

    Article  CAS  Google Scholar 

  8. Sun, L. L.; Han, L.; Huang, J. T.; Luo, X. D.; Li, X. B. Single-atom catalysts for photocatalytic hydrogen evolution: A review. Int. J. Hydrogen Energy 2022, 47, 17583–17599.

    Article  CAS  Google Scholar 

  9. Aggarwal, P.; Sarkar, D.; Awasthi, K.; Menezes, P. W. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord. Chem. Rev. 2022, 452, 214289.

    Article  CAS  Google Scholar 

  10. Mohammadnezhad, F.; Kampouri, S.; Wolff, S. K.; Xu, Y. K.; Feyzi, M.; Lee, J. H.; Ji, X. L.; Stylianou, K. C. Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 5044–5051.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.

    Article  CAS  Google Scholar 

  12. Li, C. Z.; Liu, J. L.; Li, H.; Wu, K. F.; Wang, J. H.; Yang, Q. H. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2357.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Wei, S. C.; Zhang, F.; Zhang, W. B.; Qiang, P. R.; Yu, K. J.; Fu, X. B.; Wu, D. Q.; Bi, S.; Zhang, F. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 2019, 141, 14272–14279.

    Article  CAS  PubMed  Google Scholar 

  14. Moon, H. S.; Hsiao, K. C.; Wu, M. C.; Yun, Y. J.; Hsu, Y. J.; Yong, K. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv. Mater. 2023, 35, 2200172.

    Article  CAS  Google Scholar 

  15. Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

    Article  CAS  Google Scholar 

  16. Nguyen, H. L. Metal-organic frameworks can photocatalytically split water-why not. Adv. Mater. 2022, 34, 2200465.

    Article  CAS  Google Scholar 

  17. Mi, Z.; Zhou, T.; Weng, W. J.; Unruangsri, J.; Hu, K.; Yang, W. L.; Wang, C. C.; Zhang, K. A. I.; Guo, J. Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 9642–9649.

    Article  CAS  Google Scholar 

  18. Liu, S. Z.; Guo, Z.; Qian, X. H.; Zhang, J. Y.; Liu, J. X.; Lin, J. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048–1054.

    Article  CAS  Google Scholar 

  19. Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, T. N.; Azhar, I.; Yang, Y. T.; Lu, Y.; Tian, Y. Y.; Gao, N.; Cui, F. C.; Yang, L.; Jing, X. F.; Zhu, G. S. Fine-tuned mesoporous covalent organic frameworks for highly efficient low molecular-weight proteins separation. Nano Res. 2022, 15, 4569–4574.

    Article  CAS  ADS  Google Scholar 

  21. Liu, Y. N.; Jiang, L. C.; Tian, Y. Y.; Xu, Z. F.; Wang, W. T.; Qiu, M.; Wang, H. M.; Li, X.; Zhu, G. S.; Wang, Y. G. Covalent organic framework/g-C3N4 van der Waals heterojunction toward H2 production. Inorg. Chem. 2023, 62, 3271–3277.

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Y. D.; Qu, Y. T.; Zhou, Y. S.; Wang, Z. Y.; Wang, H. J.; Yang, B.; Yu, Z. Q.; Wu, Y. E. Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.

    Article  CAS  Google Scholar 

  23. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  24. Hasija, V.; Patial, S.; Raizada, P.; Aslam Parwaz Khan, A.; Asiri, A. M.; Van Le, Q.; Nguyen, V. H.; Singh, P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord. Chem. Rev. 2022, 452, 214298.

    Article  CAS  Google Scholar 

  25. Lan, Z. A.; Wu, M.; Fang, Z. P.; Zhang, Y. F.; Chen, X.; Zhang, G. G.; Wang, X. C. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. 2022, 134, e202201482.

    Article  ADS  Google Scholar 

  26. Kuecken, S.; Acharjya, A.; Zhi, L. J.; Schwarze, M.; Schomäcker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854–5857.

    Article  CAS  Google Scholar 

  27. Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B. E.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149–14153.

    Article  CAS  Google Scholar 

  28. Zhang, S. Q.; Cheng, G.; Guo, L. P.; Wang, N.; Tan, B. E.; Jin, S. B. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6007–6014.

    Article  CAS  Google Scholar 

  29. Zheng, L. L.; Wang, D. K.; Wu, S. L.; Jiang, X. H.; Zhang, J.; Xing, Q. J.; Zou, J. P.; Luo, S. L. Unveiling localized Pt–P–N bonding states constructed on covalent triazine-based frameworks for boosting photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 25425–25430.

    Article  CAS  Google Scholar 

  30. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Liu, W.; Wang, H. L. Influence of surface capping on oxygen reduction catalysis: A case study of 1.7 nm Pt nanoparticles. Surf. Sci. 2016, 648, 120–125.

    Article  CAS  ADS  Google Scholar 

  32. Li, S. Y.; Li, W. H.; Wu, X. L.; Tian, Y. Y.; Yue, J. Y.; Zhu, G. S. Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 2019, 10, 7695–7701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kong, D.; Han, X. Y.; Xie, J. J.; Ruan, Q. S.; Windle, C. D.; Gadipelli, S.; Shen, K.; Bai, Z. M.; Guo, Z. X.; Tang, J. W. Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697–7707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Xu, N. Z.; Liu, Y. B.; Yang, W. J.; Tang, J.; Cai, B. W.; Li, Q.; Sun, J. W.; Wang, K. Q.; Xu, B. L.; Zhang, Q. T. et al. 2D–2D heterojunctions of a covalent triazine framework with a triphenylphosphine-based covalent organic framework for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 11939–11946

    Article  CAS  Google Scholar 

  36. Huang, H. M.; Xu, B.; Tan, Z. K.; Jiang, Q. Q.; Fang, S. Q.; Li, L. Y.; Bi, J. H.; Wu, L. A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production. J. Alloys Compd. 2020, 833, 155057.

    Article  CAS  Google Scholar 

  37. Ma, X. H.; Liu, Y. N.; Wang, Y. P.; Jin, Z. L. Co3O4/CeO2 p–n heterojunction construction and application for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 33809–33822.

    Article  CAS  Google Scholar 

  38. Xie, J. J.; Shevlin, S. A.; Ruan, Q. S.; Moniz, S. J. A.; Liu, Y. R.; Liu, X.; Li, Y. M.; Lau, C. C.; Guo, Z. X.; Tang, J. W. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ. Sci. 2018, 11, 1617–1624.

    Article  Google Scholar 

  39. Zhen, W. L.; Gao, H. B.; Tian, B.; Ma, J. T.; Lu, G. X. Fabrication of low adsorption energy Ni-Mo cluster cocatalyst in metal-organic frameworks for visible photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 10808–10819.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Zhou, W.; Chang, K.; Meng, X. G.; Liu, G. G.; Jie, Y. N.; Ye, J. H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22271022 and 21701016) and the Science and Technology Development Planning of Jilin Province (No. YDZJ202201ZYTS342). This paper was also supported by the China Scholarship Council (CSC No. 201802335014). Partial support from the Robert A. Welch Foundation (B-0027) (S.M.) and Researchers Supporting Program (No. RSP-2024R55) at King Saud University, Riyadh, Saudi Arabia is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Wen He, Rong-Lin Zhong or Shengqian Ma.

Electronic supplementary material

12274_2024_6483_MOESM1_ESM.pdf

Electronic Supplementary Material: Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Ge, X., He, WW. et al. Covalent triazine frameworks modified by ultrafine Pt nanoparticles for efficient photocatalytic hydrogen production. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6483-y

Keywords

Navigation