Skip to main content
Log in

Enhancing photoresponsiveness of metal-organic polyhedra by modifying microenvironment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photoresponsiveness of materials is critical to their tunability and efficiency in terminal applications. Photoresponsive metal-organic polyhedra (PMOPs) feature intrinsic pores and remote controllability, but aggregation of PMOPs in solid state hampers their photoresponsiveness seriously. Herein, we report the construction of a new PMOP (Cu24(C16H12N2O4)12(C18H22O5)12, denoted as MOP-PR-LA), where long alkyl (LA) chains act as the intermolecular poles, propping against adjacent PMOP molecules to create individual microenvironment benefiting the isomerization of photoresponsive (PR) moieties. Upon ultraviolet (UV)- and visible-light irradiation, MOP-PR-LA is much easier to isomerize than the counterpart MOP-PR without LA. For propylene adsorption, MOP-PR has a low change of adsorption capacity (9.9%), while that of MOP-PR-LA reaches 58.6%. Density functional theory calculations revealed that PR in the cis state has a negative effect on adsorption, while the trans state of PR favors adsorption. This work might open an avenue for the construction of photoresponsive materials with high responsiveness and controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, N.; Kim, B. H.; Cho, S. Y.; Nam, S.; Rogers, S. P.; Jiang, Y. R.; Flanagan, J. C.; Zhai, Y.; Kim, J. H.; Lee, J. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 2017, 355, 616–619.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Zhang, X.; Wang, S.; Cheng, G. H.; Yu, P.; Chang, J. Ligh-responsive nanomaterials for cancer therapy. Engineering 2022, 13, 18–30.

    Article  CAS  Google Scholar 

  3. Pearson, S.; Feng, J.; del Campo, A. Lighting the path: Light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 2021, 31, 2105989.

    Article  CAS  Google Scholar 

  4. Zhu, W.; Guo, J. M.; Ju, Y.; Serda, R. E.; Croissant, J. G.; Shang, J.; Coker, E.; Agola, J. O.; Zhong, Q. Z.; Ping, Y. et al. Modular metal-organic polyhedra superassembly: From molecularelevel design to targeted drug delivery. Adv. Mater. 2019, 31, 1806774.

    Article  Google Scholar 

  5. Tan, M. L.; Hu, C.; Lan, Y.; Khan, J.; Deng, H.; Yang, X. K.; Wang, P. X.; Yu, X. X.; Lai, J. J.; Song, H. S. 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small 2017, 13, 1702024.

    Article  Google Scholar 

  6. Fan, W. D.; Peh, S. B.; Zhang, Z. Q.; Yuan, H. Y.; Yang, Z. Q.; Wang, Y. X.; Chai, K. G.; Sun, D. F.; Zhao, D. Tetrazole-functionalized zirconium metal-organic cages for efficient C2H2/C2H4 and C2H2/CO2 separations. Angew. Chem., Int. Ed. 2021, 60, 17338–17343.

    Article  CAS  Google Scholar 

  7. Andrés, M. A.; Carné-Sánchez, A.; Sánchez-Lainez, J.; Roubeau, O.; Coronas, J.; Maspoch, D.; Gascón, I. Ultrathin films of porous metal-organic polyhedra for gas separation. Chem.Eur. J. 2020, 26, 143–147.

    Article  PubMed  Google Scholar 

  8. Ghosh, A. C.; Legrand, A.; Rajapaksha, R.; Craig, G. A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F. M. Rhodium-based metal-organic polyhedra assemblies for selective CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 3626–3636.

    Article  CAS  PubMed  Google Scholar 

  9. Gan, H. M.; Qin, C.; Zhao, L.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide. Cryst. Growth Des. 2021, 21, 1028–1034.

    Article  CAS  Google Scholar 

  10. Gan, H. M.; Xu, N.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Equi-size nesting of platonic and archimedean metal-organic polyhedra into a twin capsid. Nat. Commun. 2020, 11, 4103.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Jayapaul, J.; Komulainen, S.; Zhivonitko, V. V.; Mareš, J.; Giri, C.; Rissanen, K.; Lantto, P.; Telkki, V. V.; Schröder, L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat. Commun. 2022, 13, 1708.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Kondinski, A.; Menon, A.; Nurkowski, D.; Farazi, F.; Mosbach, S.; Akroyd, J.; Kraft, M. Automated rational design of metal-organic polyhedra. J. Am. Chem. Soc. 2022, 144, 11713–11728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, M. X.; Lai, Y. Y.; Li, M.; Hong, T.; Wang, W. Y.; Yu, H. T.; Li, L. W.; Zhou, Q. J.; Ke, Y. B.; Zhan, X. Z. et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites. Angew. Chem., Int. Ed. 2019, 58, 17412–17417.

    Article  CAS  Google Scholar 

  14. Mollick, S.; Mukherjee, S.; Kim, D.; Qiao, Z. W.; Desai, A. V.; Saha, R.; More, Y. D.; Jiang, J. W.; Lah, M. S.; Ghosh, S. K. Hydrophobic shielding of outer surface: Enhancing the chemical stability of metal-organic polyhedra. Angew. Chem., Int. Ed. 2019, 58, 1041–1045.

    Article  CAS  Google Scholar 

  15. Augustyniak, A. W.; Fandzloch, M.; Domingo, M.; Lakomska, I.; Navarro, J. A. R. A vanadium(IV) pyrazolate metal-organic polyhedron with permanent porosity and adsorption selectivity. Chem. Commun. 2015, 51, 14724–14727.

    Article  CAS  Google Scholar 

  16. Luo, Y.; Ying, S. W.; Li, S. J.; Li, L. K.; Li, H. Y.; Asad, M.; Zang, S. Q.; Mak, T. C. W. Photo/electrochromic dual responsive behavior of a cage-like Zr(IV)-viologen metal-organic polyhedron (MOP). Inorg. Chem. 2022, 61, 2813–2823.

    Article  CAS  PubMed  Google Scholar 

  17. Bae, J.; Baek, K.; Yuan, D. Q.; Kim, W.; Kim, K.; Zhou, H. C.; Park, J. Reversible photoreduction of Cu(II)-coumarin metal-organic polyhedra. Chem. Commun. 2017, 53, 9250–9253.

    Article  CAS  Google Scholar 

  18. Murase, T.; Sato, S.; Fujita, M. Switching the interior hydrophobicity of a self-assembled spherical complex through the photoisomeriaation of confined aaobenaene chromophores. Angew. Chem., Int. Ed. 2007, 46, 5133–5136.

    Article  CAS  Google Scholar 

  19. Park, J.; Sun, L. B.; Chen, Y. P.; Perry, Z.; Zhou, H. C. Azobenzene-functionalized metal-organic polyhedra for the optically responsive capture and release of guest molecules. Angew. Chem., Int. Ed. 2014, 53, 5842–5846.

    Article  CAS  Google Scholar 

  20. Han, M. X.; Michel, R.; He, B. C.; Chen, Y. S.; Stalke, D.; John, M.; Clever, G. H. Light- triggered guest uptake and release by a photochromic coordination cage. Angew. Chem., Int. Ed. 2013, 52, 1319–1323.

    Article  CAS  Google Scholar 

  21. Li, R. J.; Han, M. X.; Tessarolo, J.; Holstein, J. J.; Lübben, J.; Dittrich, B.; Volkmann, C.; Finae, M.; Jenne, C.; Clever, G. H. Successive photoswitching and derivatization effects in photochromic dithienylethene-based coordination cages. ChemPhotoChem 2019, 3, 378–383.

    Article  CAS  Google Scholar 

  22. Mollick, S.; Fajal, S.; Mukherjee, S.; Ghosh, S. K. Stabiliaing metal-organic polyhedra (MOP): Issues and strategies. Chem. — Asian J. 2019, 14, 3096–3108.

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, X.; Zhong, W.; Bai, C. H.; Li, Y. W. Encapsulation of a metal-organic polyhedral in the pores of a metal-organic framework. J. Am. Chem. Soc. 2016, 138, 1138–1141.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, M.; Wang, Q. Q.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. An amine-functionalized zirconium metal-organic polyhedron photocatalyst with high visible-light activity for hydrogen production. Chem. —Eur. J. 2019, 25, 2824–2830.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, Y.; Tan, P.; Qi, S. C.; Gu, C.; Peng, S. S.; Wu, F.; Liu, X. Q.; Sun, L. B. Breathing metal-organic polyhedra controlled by light for carbon dioxide capture and liberation. CCS Chem. 2021, 3, 1659–1668.

    Article  CAS  Google Scholar 

  26. Jiang, Y.; Park, J.; Tan, P.; Feng, L.; Liu, X. Q.; Sun, L. B.; Zhou, H. C. Maximizing photoresponsive efficiency by isolating metal-organic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc. 2019, 141, 8221–8227.

    Article  CAS  PubMed  Google Scholar 

  27. Lal, G.; Derakhshandeh, M.; Akhtar, F.; Spasyuk, D. M.; Lin, J. B.; Trifkovic, M.; Shimizu, G. K. H. Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra. J. Am. Chem. Soc. 2019, 141, 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal, M.; Ahmad, I.; Ali, S.; Muhammad, N.; Ahmed, S.; Sohail, M. Dimeric “paddle-wheel” carboxylates of copper(II): Synthesis, crystal structure and electrochemical studies. Polyhedron 2013, 50, 524–531.

    Article  CAS  Google Scholar 

  29. Zhao, D.; Tan, S. W.; Yuan, D. Q.; Lu, W. G.; Rezenom, Y. H.; Jiang, H. L.; Wang, L. Q.; Zhou, H. C. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 2011, 23, 90–93.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Liu, J. T.; Wang, S. F.; Huang, T. F.; Manchanda, P.; Abou-Hamad, E.; Nunes, S. P. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation. Sci. Adv. 2020, 6, eabb3188.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Wang, S. Y.; Yang, Q. Y.; Zhong, C. L. Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study. Sep. Purif. Technol. 2008, 60, 30–35.

    Article  CAS  Google Scholar 

  32. Musa, S. G.; Aljunid Merican, Z. M.; Haruna, A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J. Solid State Chem. 2022, 314, 123363.

    Article  CAS  Google Scholar 

  33. Kim, K. C.; Lee, C. Y.; Fairen-Jimenez, D.; Nguyen, S. T.; Hupp, J. T.; Snurr, R. Q. Computational study of propylene and propane binding in metal-organic frameworks containing highly exposed Cu+ or Ag+ cations. J. Phys. Chem. C 2014, 118, 9086–9092.

    Article  CAS  Google Scholar 

  34. Huang, R. H.; Hill, M. R.; Babarao, R.; Medhekar, N. V. CO2 adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks. J. Phys. Chem. C 2016, 120, 16658–16667.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB3806800), the National Science Fund for Distinguished Young Scholars (No. 22125804), the National Natural Science Foundation of China (No. 22078155), and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Tan or Lin-Bing Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Tan, P., Song, Q. et al. Enhancing photoresponsiveness of metal-organic polyhedra by modifying microenvironment. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6465-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6465-0

Keywords

Navigation