Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local synaptic inhibition mediates cerebellar granule cell pattern separation and enables learned sensorimotor associations

Abstract

The cerebellar cortex has a key role in generating predictive sensorimotor associations. To do so, the granule cell layer is thought to establish unique sensorimotor representations for learning. However, how this is achieved and how granule cell population responses contribute to behavior have remained unclear. To address these questions, we have used in vivo calcium imaging and granule cell-specific pharmacological manipulation of synaptic inhibition in awake, behaving mice. These experiments indicate that inhibition sparsens and thresholds sensory responses, limiting overlap between sensory ensembles and preventing spiking in many granule cells that receive excitatory input. Moreover, inhibition can be recruited in a stimulus-specific manner to powerfully decorrelate multisensory ensembles. Consistent with these results, granule cell inhibition is required for accurate cerebellum-dependent sensorimotor behavior. These data thus reveal key mechanisms for granule cell layer pattern separation beyond those envisioned by classical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Local synaptic inhibition sparsens and thresholds cerebellar granule cell sensory responses.
Fig. 2: Synaptic inhibition restricts the number of granule cells recruited by sensory input.
Fig. 3: Cerebellar granule cells exhibit stimulus feature preferences that are not abolished by blocking synaptic inhibition.
Fig. 4: Synaptic inhibition facilitates pattern separation for auditory and somatosensory responsive granule cell ensembles.
Fig. 5: Coincident stimuli create unique granule cell ensembles.
Fig. 6: Cerebellar granule cells respond with temporal variability to auditory stimuli.
Fig. 7: Local synaptic inhibition is necessary for the expression of a sensorimotor association.

Similar content being viewed by others

Data availability

Due to the large size of these datasets, data that support the findings of this study are available from the corresponding author upon request.

Code availability

Codes that support the findings of this study are available at

https://github.com/Glickfeld-And-Hull-Laboratories/ImagingCode-Glickfeld-Hull/tree/master/court/Manuscripts/Fleming_NatureNeurosci.

References

  1. Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Raymond, J. L. & Medina, J. F. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41, 233–253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex (Springer, 1974).

  4. D’Angelo, E. & De Zeeuw, C. I. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 32, 30–40 (2009).

    Article  PubMed  Google Scholar 

  5. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

    Article  Google Scholar 

  7. Chabrol, F. P., Arenz, A., Wiechert, M. T., Margrie, T. W. & DiGregorio, D. A. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat. Neurosci. 18, 718–727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, C. C. et al. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2, e00400 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ishikawa, T., Shimuta, M. & Hausser, M. Multimodal sensory integration in single cerebellar granule cells in vivo. eLife 4, e12916 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bengtsson, F. & Jorntell, H. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc. Natl Acad. Sci. USA 106, 2389–2394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. 497, 753–759 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α-6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Chadderton, P., Margrie, T. W. & Hausser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giovannucci, A. et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20, 727–734 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knogler, L. D., Markov, D. A., Dragomir, E. I., Stih, V. & Portugues, R. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr. Biol. 27, 1288–1302 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Ozden, I., Dombeck, D. A., Hoogland, T. M., Tank, D. W. & Wang, S. S. Widespread state-dependent shifts in cerebellar activity in locomoting mice. PLoS ONE 7, e42650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shields, B. C. et al. Deconstructing behavioral neuropharmacology with cellular specificity. Science 356, eaaj2161 (2017).

    Article  PubMed  Google Scholar 

  20. Shields, B. C. et al. Thousandfold cell-specific pharmacology of neurotransmission. Preprint at bioRxiv https://doi.org/10.1101/2022.10.18.512779 (2022).

  21. Deverett, B., Koay, S. A., Oostland, M. & Wang, S. S. Cerebellar involvement in an evidence-accumulation decision-making task. eLife 7, e36781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aller, M. I. et al. Cerebellar granule cell Cre recombinase expression. Genesis 36, 97–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Henschke, J. U. & Pakan, J. M. Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas. eLife 9, e59148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chadderton, P., Margrie, T. W. & Ha, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Rancz, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Albergaria, C., Silva, N. T., Pritchett, D. L. & Carey, M. R. Locomotor activity modulates associative learning in mouse cerebellum. Nat. Neurosci. 21, 725–735 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, S., Augustine, G. J. & Chadderton, P. Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nat. Commun. 8, 232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brown, S. T. & Raman, I. M. Sensorimotor integration and amplification of reflexive whisking by well-timed spiking in the cerebellar corticonuclear circuit. Neuron 99, 564–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, S., Augustine, G. J. & Chadderton, P. The cerebellum linearly encodes whisker position during voluntary movement. eLife 5, e10509 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Proville, R. D. et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat. Neurosci. 17, 1233–1239 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Cooke, S. F., Komorowski, R. W., Kaplan, E. S., Gavornik, J. P. & Bear, M. F. Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat. Neurosci. 18, 262–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heffley, W. & Hull, C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife 8, e46764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Duguid, I., Branco, T., London, M., Chadderton, P. & Hausser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lennartz, R. C. & Weinberger, N. M. Analysis of response systems in Pavlovian conditioning reveals rapidly versus slowly acquired conditioned responses: support for 2 factors, implications for behavior and neurobiology. Psychobiology 20, 93–119 (1992).

    Article  Google Scholar 

  38. Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nat. Rev. Neurosci. 3, 122–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kalmbach, B. E., Voicu, H., Ohyama, T. & Mauk, M. D. A subtraction mechanism of temporal coding in cerebellar cortex. J. Neurosci. 31, 2025–2034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Medina, J. F. & Mauk, M. D. Computer simulation of cerebellar information processing. Nat. Neurosci. 3, 1205–1211 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M. & Mauk, M. D. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20, 5516–5525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kennedy, A. et al. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat. Neurosci. 17, 416–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mauk, M. D. & Donegan, N. H. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem. 4, 130–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Fleming, E. & Hull, C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J. Neurophysiol. 121, 105–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Straub, I. et al. Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity. eLife 9, e51771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Billings, G., Piasini, E., Lorincz, A., Nusser, Z. & Silver, R. A. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83, 960–974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heiney, S. A., Wohl, M. P., Chettih, S. N., Ruffolo, L. I. & Medina, J. F. Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. J. Neurosci. 34, 14845–14853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, S. S. Differential conditioning and stimulus generalization of the rabbits nictitating membrane response. J. Comp. Physiol. Psychol. 77, 136–142 (1971).

    Article  CAS  PubMed  Google Scholar 

  49. Siegel, S., Hearst, E., George, N. & O’Neal, E. Generalization gradients obtained from individual subjects following classical conditioning. J. Exp. Psychol. 78, 171–174 (1968).

    Article  CAS  PubMed  Google Scholar 

  50. Fiocchi, F. R., Dijkhuizen, S., Koekkoek, S. K. E., DeZeeuw, C. I. & Boele, H. J. Stimulus generalization in mice during Pavlovian eyeblink conditioning. eNeuro 9, ENEURO.0400-21.2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Precht, W. & Llinas, R. Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp. Brain Res. 9, 30–52 (1969).

    Article  CAS  PubMed  Google Scholar 

  52. Tabuchi, S., Gilmer, J. I., Purba, K. & Person, A. L. Pathway-specific drive of cerebellar Golgi cells reveals integrative rules of cortical inhibition. J. Neurosci. 39, 1169–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gurnani, H. & Silver, R. A. Multidimensional population activity in an electrically coupled inhibitory circuit in the cerebellar cortex. Neuron 109, 1739–1753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilmer, J. I. & Person, A. L. Morphological constraints on cerebellar granule cell combinatorial diversity. J. Neurosci. 37, 12153–12166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A. Cerebellar granule cell axons support high-dimensional representations. Nat. Neurosci. 24, 1142–1150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cayco-Gajic, N. A., Clopath, C. & Silver, R. A. Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nat. Commun. 8, 1116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cayco-Gajic, N. A. & Silver, R. A. Re-evaluating circuit mechanisms underlying pattern separation. Neuron 101, 584–602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jorntell, H. & Ekerot, C. F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fore, T. R., Taylor, B. N., Brunel, N. & Hull, C. Acetylcholine modulates cerebellar granule cell spiking by regulating the balance of synaptic excitation and inhibition. J. Neurosci. 40, 2882–2894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rossi, P. et al. Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors. Eur. J. Neurosci. 24, 419–432 (2006).

    Article  PubMed  Google Scholar 

  61. Markwalter, K. H., Yang, Y., Holy, T. E. & Bonni, A. Sensorimotor coding of vermal granule neurons in the developing mammalian cerebellum. J. Neurosci. 39, 6626–6643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ohyama, T., Nores, W. L., Murphy, M. & Mauk, M. D. What the cerebellum computes. Trends Neurosci. 26, 222–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Kanichay, R. T. & Silver, R. A. Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J. Neurosci. 28, 8955–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Duguid, I. et al. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition. Proc. Natl Acad. Sci. USA 112, 13099–13104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crowley, J. J., Fioravante, D. & Regehr, W. G. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration. Neuron 63, 843–853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Safo, P. & Regehr, W. G. Timing dependence of the induction of cerebellar LTD. Neuropharmacology 54, 213–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Houck, B. D. & Person, A. L. Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex. J. Comp. Neurol. 523, 2254–2271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gao, Z. et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron 89, 645–657 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khilkevich, A., Canton-Josh, J., DeLord, E. & Mauk, M. D. A cerebellar adaptation to uncertain inputs. Sci. Adv. 4, eaap9660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heiney, S. A., Kim, J., Augustine, G. J. & Medina, J. F. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34, 2321–2330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rudolph, S. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33, 108338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe, D. et al. Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95, 17–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Seja, P. et al. Raising cytosolic Cl in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 31, 1217–1230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8, e38173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification (Wiley, 2001).

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) (institutes: NINDS (5R01NS096289 and R01NS112917 to C.H., 1F31NS113742 to E.A.F. and R01-NS107472 to M.R.T.), NIMH (RF1-MH117055 and DP2-MH1194025 to M.R.T.), NIDA (R61-DA051530 to M.R.T.) and NEI (EY031396 to G.D.F.)). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper. We thank S. Lisberger, L. Glickfeld, J. Pearson and N. Calakos for input throughout the project; J. Medina and S. Heiney for input specific to eyelid conditioning experiments; J. Medina and W. Regehr for comments on the paper; and B. Shields for technical assistance with DART reagents.

Author information

Authors and Affiliations

Authors

Contributions

E.A.F. performed surgeries, conducted experiments and analyzed data. G.D.F. performed decoding analyses. M.R.T. provided DART reagents and consulted on their use. C.H. and E.A.F. designed experiments, made figures and wrote the paper. All authors read and edited the paper.

Corresponding author

Correspondence to Court Hull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Chris de Zeeuw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Table 1.

Reporting Summary

Supplementary Video

Example field of view of granule cell activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, E.A., Field, G.D., Tadross, M.R. et al. Local synaptic inhibition mediates cerebellar granule cell pattern separation and enables learned sensorimotor associations. Nat Neurosci 27, 689–701 (2024). https://doi.org/10.1038/s41593-023-01565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01565-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing