Skip to main content
Log in

Liquid-phase epitaxial layer by layer brushing fabrication of metal-organic frameworks films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of metal-organic framework (MOF) films is of great importance to expand their applications. Herein, we report a facile and universal method of liquid-phase epitaxial (LPE) layer by layer (LBL) brushing approach for fabricating MOF films on various substrates in a high-throughput fashion. This MOF films preparation method offers a great prospective to cost-effectively construct films with short preparation time and little reagent consumption. Moreover, this LBL brushing approach has been implemented successfully to assemble various MOF films, including HKUST-1, zeolitic imidazolate framework-8 (ZIF-8), Cu(bdc), and Cu2(L)2P (L = bdc, ndc, and cam; P = dabco and bipy). Afterwards, the classic MOF HKUST-1 and ZIF-8 films were grown on sensor chip electrode and porous fiber support for good volatile organic compounds (VOCs) selective sensing and water purification applications. This study demonstrates that this LBL brushing preparation method can be employed to synthesize various MOF films with a variety of characteristics to realize their sensing and separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Z. Y.; Richardson, J. J.; Kong, B.; Liang, K. Nanobiohybrids: Materials approaches for bioaugmentation. Sci. Adv. 2020, 6, eaaz0330.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.

    Article  CAS  Google Scholar 

  3. Xiao, J. D.; Jiang, H. L. Matal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Z.; Wang, R.; Ma, T.; Wang, J. L.; Duan, Y.; Dai, Z. Z.; Xu, J.; Wang, H. J.; Yuan, J. Y.; Jiang, H. L. et al. Large-area crystalline zeolitic imidazolate framework thin films. Angew. Chem., Int. Ed. 2021, 60, 14124–14130.

    Article  CAS  Google Scholar 

  5. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  6. Wu, D.; Zhang, P. F.; Yang, G. P.; Hou, L.; Zhang, W. Y.; Han, Y. F.; Liu, P.; Wang, Y. Y. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord. Chem. Rev. 2021, 434, 213709.

    Article  CAS  Google Scholar 

  7. Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827–3832.

    Article  CAS  Google Scholar 

  8. Zhu, Y. D.; Kang, Y.; Gu, Z. G.; Zhang, J. Step by step bisacrificial templates growth of bimetallic sulfide QDs-attached MOF nanosheets for nonlinear optical limiting. Adv. Opt. Mater. 2021, 9, 2002072.

    Article  CAS  Google Scholar 

  9. Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

    Article  CAS  Google Scholar 

  10. Cerasale, D. J.; Ward, D. C.; Easun, T. L. MOFs in the time domain. Nat. Rev. Chem. 2022, 6, 9–30.

    Article  PubMed  Google Scholar 

  11. Cao, J.; Li, X. J.; Tian, H. Q. Meta-organic framework (MOF)-based drug delivery. Curr. Med. Chem. 2020, 27, 5949–5969.

    Article  CAS  PubMed  Google Scholar 

  12. He, X. Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Namo-Micro Lett. 2023, 15, 148.

    Article  ADS  CAS  Google Scholar 

  13. Tang, X. X.; Liu, C.; Wang, H.; Lv, L. P.; Sun, W. W.; Wang, Y. Pristine metal-organic frameworks for next-generation batteries. Coord. Chem. Rev. 2023, 494, 215361.

    Article  CAS  Google Scholar 

  14. Ma, Z. Z.; Li, Q. H.; Wang, Z. R.; Gu, Z. G.; Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 2022, 13, 6347.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.

    Article  CAS  Google Scholar 

  16. Cao, L. A.; Yao, M. S.; Jiang, H. J.; Kitagawa, S.; Ye, X. L.; Li, W. H.; Xu, G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 2020, 8, 9085–9090.

    Article  CAS  Google Scholar 

  17. Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

    Article  CAS  Google Scholar 

  18. Rassu, P.; Ma, X. J.; Wang, B. Engineering of catalytically active sites in photoactive metal-organic frameworks. Coord. Chem. Rev. 2022, 465, 214561.

    Article  CAS  Google Scholar 

  19. Ren, X. H.; Liao, G. C.; Li, Z. J.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781.

    Article  CAS  Google Scholar 

  20. Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv, X. L.; Feng, L.; Xie, L. H.; He, T.; Wu, W.; Wang, K. Y.; Si, G. R.; Wang, B.; Li, J. R.; Zhou, H. C. Linker desymmetrization: Access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes. J. Am. Chem. Soc. 2021, 143, 2784–2791.

    Article  CAS  PubMed  Google Scholar 

  22. Hao, Y. C.; Chen, L. W.; Li, J. N.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q. H.; Gao, W. Y.; Li, S. W.; Yu, Z. L. et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021, 12, 2682.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, Z. G.; Zhang, J. Epitaxial growth and applications of oriented metal-organic framework thin films. Coord. Chem. Rev. 2019, 378, 513–532.

    Article  CAS  Google Scholar 

  24. Liu, J. X.; Wöll, C. Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev. 2017, 46, 5730–5770.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, Y. H.; Gu, Z. G.; Zhang, J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale 2020, 12, 12712–12730.

    Article  CAS  PubMed  Google Scholar 

  26. Gu, Z. G.; Pfriem, A.; Hamsch, S.; Breitwieser, H.; Wohlgemuth, J.; Heinke, L.; Gliemann, H.; Wöll, C. Transparent films of metal-organic frameworks for optical applications. Microporous Mesoporous Mater. 2015, 211, 82–87.

    Article  CAS  Google Scholar 

  27. Yu, Q.; Jin, R. R.; Zhao, L. P.; Wang, T. S.; Liu, F. M.; Yan, X.; Wang, C. G.; Sun, P.; Lu, G. Y. MOF- derived mesoporous and hierarchical hollow-structured In2O3-NiO composites for enhanced triethylamine sensing. ACS Sens. 2021, 6, 3451–3461.

    Article  CAS  PubMed  Google Scholar 

  28. Jin, J.; Li, P.; Chun, D. H.; Jin, B. J.; Zhang, K.; Park, J. H. Defect dominated hierarchical Ti-metal-organic frameworks via a linker competitive coordination strategy for toluene removal. Adv. Funct. Mater. 2021, 31, 2102511.

    Article  CAS  Google Scholar 

  29. Li, H. Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.

    Article  CAS  PubMed  Google Scholar 

  30. Siu, B.; Chowdhury, A. R.; Yan, Z. W.; Humphrey, S. M.; Hutter, T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord. Chem. Rev. 2023, 485, 215119.

    Article  CAS  Google Scholar 

  31. Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.

    Article  CAS  PubMed  Google Scholar 

  32. Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C. A novel method to measure diffusion coefficients in porous metal-organic frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8093–8098.

    Article  Google Scholar 

  33. Chen, H.; Gu, Z. G.; Zhang, J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem. Sci. 2021, 12, 12346–12352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhai, R.; Xiao, Y. H.; Gu, Z. G.; Zhang, J. Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films. Nano Res. 2022, 15, 1102–1108.

    Article  ADS  CAS  Google Scholar 

  35. Li, D. J.; Gu, Z. G.; Vohra, I.; Kang, Y.; Zhu, Y. S.; Zhang, J. Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds. Small 2017, 13, 1604035.

    Article  Google Scholar 

  36. Heinke, L.; Gu, Z. G.; Wöll, C. The surface barrier phenomenon at the loading of metal-organic frameworks. Nat. Commun. 2014, 5, 4562.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Li, Y. G.; Liang, C. E.; Shen, Y.; Huang, W. H.; Li, Q. Q.; Liu, J. N.; Zhang, J.; Deng, P.; Bashir, S.; Fang, Q. L. Porous La2O2CO3 derived from solvent-guided metal-organic frameworks for high-efficient phosphorus removal. Sep. Purif. Technol. 2023, 324, 124559.

    Article  CAS  Google Scholar 

  38. Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

    Article  ADS  CAS  Google Scholar 

  39. Chen, C. C.; Jin, L. J.; Dong, H. L.; Jiang, J.; Feng, H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Lu, J. M. Modulating adsorption of active hydrogen atoms on palladium nanoparticles: Doping ruthenium into metal-organic frameworks for efficient electrocatalytic hydrodechlorination. Sep. Purif. Technol. 2023, 324, 124527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U23A2095), the National Key R&D Program of China (No. 2022YFA1503300), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2022081), Natural Science Foundation of Fujian Province (No. 2022J06031), and the STS Project of Fujian-CAS (Nos. 2023T3003, 2023T3052, and 2023T3054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Gu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, LM., Zhai, R., Ma, ZZ. et al. Liquid-phase epitaxial layer by layer brushing fabrication of metal-organic frameworks films. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6444-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6444-5

Keywords

Navigation