Skip to main content
Log in

Porous Ti3C2Tx MXene nanosheets sandwiched between polyimide fiber mats for electromagnetic interference shielding

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the rapid development of wireless communication technology and electronic devices, the issue of electromagnetic interference (EMI) is becoming increasingly severe. Developing a new and flexible electromagnetic interference shielding material has become a challenging task. Here, a sandwich-structured EMI shielding composite film was prepared using electrospinning and vacuum filtration methods. In this process, a porous MXene was synthesized through a reaction with cobalt acetate and served as the intermediate layer in the composite film to shield electromagnetic waves. The electrospun polyimide (PI) fibers were used as the top and bottom layers of the composite film, which can protect the porous MXene from oxidation. This lightweight and flexible composite film integrates electromagnetic interference shielding and thermal insulation capabilities, showing excellent comprehensive performance. The composite film achieves an EMI shielding effectiveness of 48.8 dB in X-band (8.2–12.4 GHz), and absolute shielding effectiveness of the composite film reached a satisfying 4142.43 (dB·cm2)/g. Owing to the design of a multi-layer porous structure, the density of the composite film is 0.65 g/cm3. Furthermore, the thermal conductivity of the film is 0.042 W/(m·K) due to the clamping of electrospun PI fibers, showing excellent thermal insulation performance. Additionally, the composite film exhibits excellent high and low-temperature resistance. In summary, this work provides a feasible strategy for preparing a lightweight polymer-based EMI shielding film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

    Article  Google Scholar 

  2. Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranete-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

    Article  Google Scholar 

  3. Wang, J. E.; Song, T. L.; Ming, W.; Yele, M. X.; Chen, L. F.; Zhang, H.; Zhang, X. J.; Liang, B. L.; Wang, G. S. High MXene loading, nacretinspired MXene/ANF electromagnetic interference shielding composite films with ultralong strainttotfailure and excellent Joule heating performance. Nano Res., in press, https://doi.org/10.1007/s12274-023-6232-y.

  4. Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipatetcotterephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

    Article  CAS  Google Scholar 

  5. Yang, J. M.; Wang, H.; Zhang, Y. L.; Zhang, H. X.; Gu, J. W. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nnoo-Micro Lett. 2024, 16, 31.

    Article  CAS  ADS  Google Scholar 

  6. Zhao, J.; Li, M.; Gao, X. G. Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 2022, 915, 165439.

    Article  CAS  Google Scholar 

  7. Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flowerilike microspheres on pomelo peelstderived porous carbon nanosheets for hightefficient Xtband electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.

  8. Zhu, L. L.; Mo, R.; Yin, C. G.; Guo, W. Y.; Yu, J. H.; Fan, J. C. Synergistically constructed electromagnetic network of magnetic particletdecorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Appl. Mater. Interfaces 2022, 14, 56120–56131.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S.; Wu, J. T.; Liu, J. G.; Yang, Z.; Wang, G. S. Ti3C2Tx MXene nanosheets sandwiched between Ag nanowiretpolyimide fiber mats for electromagnetic interference shielding. ACS Appl. Nano Mater. 2021, 4, 13976–13985.

    Article  CAS  Google Scholar 

  10. Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetictdielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

    Article  CAS  Google Scholar 

  11. Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

    Article  CAS  Google Scholar 

  12. Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenestbased optical functional materials. Adv. Photonics Res. 2023, 4, 2300224.

    Article  Google Scholar 

  13. He, P.; Cao, M. S.; Cai, Y. Z.; Shu, J. C.; Cao, W. Q.; Yuan, J. Selft assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 2020, 157, 80–89.

    Article  CAS  Google Scholar 

  14. Liu, H. G.; Wang, Z.; Yang, Y. J.; Wu, S. Q.; Wang, C. K.; You, C. Y.; Tian, N. Thermally conductive MWCNTs/Fe3O4/Ti3C2Tx MXene multitlayer films for broadband electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 130, 75–85.

    Article  CAS  Google Scholar 

  15. Gong, K. J.; Peng, Y. M.; Liu, A.; Qi, S. H.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A: Appl. Sci. Manuf. 2024, 176, 107857.

    Article  CAS  Google Scholar 

  16. Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixedtdimensional lightweight flexible carbon foam/carbon nanotubestbased heterostructuresp An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

    Article  CAS  Google Scholar 

  17. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  ADS  Google Scholar 

  18. Xu, H. J.; Fan, J. X.; Su, H.; Liu, C. F.; Chen, G.; Dall’Agnese, Y.; Gao, Y. Metal iontinduced porous MXene for alltsolidtstate flexible supercapacitors. Nano Lett. 2023, 23, 283–290.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Shen, X.; Kim, J. K. Graphene and MXenetbased porous structures for multifunctional electromagnetic interference shielding. Nano Res. 2023, 16, 1387–1413.

    Article  CAS  ADS  Google Scholar 

  20. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultrat flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  ADS  Google Scholar 

  21. Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

    Article  CAS  Google Scholar 

  22. Sun, K.; Wang, F.; Yang, W. K.; Liu, H.; Pan, C. F.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance. ACS Appl. Mater. Interfaces 2021, 13, 50368–50380.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y.; Gao, Q.; Sheng, X. Z.; Zhang, S.; Chen, J. J.; Ma, Y.; Qin, J. B.; Zhao, Y. S.; Shi, X. T.; Zhang, G. C. Flexible, robust, sandwich structure polyimide composite film with alternative MXene and Ag NWs layers for electromagnetic interference shielding. J. Mater. Sci. Technol. 2023, 159, 194–203.

    Article  CAS  Google Scholar 

  24. Zhuo, L. H.; Cai, Y. L.; Shen, D.; Gou, P. F.; Wang, M. J.; Hu, G.; Xie, F. Antit oxidation polyimidetbased hybrid foams assembled with bilayer coatings for efficient electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138808.

    Article  CAS  Google Scholar 

  25. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  26. Zhang, S.; Wu, J. T.; Liang, W. H.; Zhao, P. Y.; Wang, H. Y.; Cong, Y.; Wang, G. S. Flexible and multifunctional polyimidetbased composite films by selftreducing reaction for electromagnetic interference shielding in extreme environments. Carbon 2023, 212, 118103.

    Article  CAS  Google Scholar 

  27. Ma, C.; Mai, T.; Wang, P. L.; Guo, W. Y.; Ma, M. G. Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion. ACS Appl. Mater. Interfaces 2023, 15, 47425–47433.

    Article  CAS  PubMed  Google Scholar 

  28. Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External fieldtassisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

    Article  CAS  Google Scholar 

  29. Oliveira, F. M.; Azadmanjiri, J.; Wang, X. H.; Yu, M. H.; Sofer, Z. Structure design and processing strategies of MXenetbased materials for electromagnetic interference shielding. Small Methods 2023, 7, 2300112.

    Article  CAS  Google Scholar 

  30. Chen, Q. Q.; Fan, B. B.; Zhang, Q. P.; Wang, S.; Cui, W.; Jia, Y. C.; Xu, S. K.; Zhao, B.; Zhang, R. Design of 3D lightweight Ti3C2T MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceram. Int. 2022, 48, 14578–14586.

    Article  CAS  Google Scholar 

  31. Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

    Article  CAS  PubMed  Google Scholar 

  32. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACSNano 2018, 12, 4583–4593.

    CAS  Google Scholar 

  33. Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 135, 105960.

    Article  CAS  Google Scholar 

  34. Tan, H. X.; Gou, J. R.; Zhang, X.; Ding, L.; Wang, H. H. Sandwich-structured Ti3C2Tx-MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J. Membr. Sci. 2023, 675, 121560.

    Article  CAS  Google Scholar 

  35. Xie, F.; Jia, F. F.; Zhuo, L. H.; Lu, Z. Q.; Si, L. M.; Huang, J. Z.; Zhang, M. Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391.

    Article  CAS  PubMed  Google Scholar 

  36. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Xu, H. L.; Yin, X. W.; Li, X. L.; Li, M. H.; Liang, S.; Zhang, L. T.; Cheng, L. F. Lightweight Ti2CT MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorptiondominated feature. ACS Appl. Mater. Interfaces 2019, 17, 10198–10207.

    Article  Google Scholar 

  38. Chen, J.; Liao, X.; Xiao, W.; Yang, J. M.; Jiang, Q. Y.; Li, G. X. Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustainable Chem. Eng. 2019, 7, 9904–9915.

    Article  CAS  Google Scholar 

  39. Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513.

    Article  CAS  Google Scholar 

  40. Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

    Article  CAS  Google Scholar 

  41. Lu, Y. M.; Zhao, X. N.; Lin, Y.; Li, P.; Tao, Y.; Wang, Z. Q.; Ma, J. G.; Xu, H. Y.; Liu, Y. C. Lightweight MXene/carbon composite foam with hollow skeleton for air-stable, high-temperature-resistant and compressible electromagnetic interference shielding. Carbon 2023, 206, 375–382.

    Article  CAS  Google Scholar 

  42. Wang, K. F.; Chen, C.; Zheng, Q. T.; Xiong, J.; Liu, H. Z.; Yang, L.; Chen, Y. J.; Li, H. Multifunctional recycled carbon fiber-Ti3C2T MXene paper with superior electromagnetic interference shielding and photo/electro-thermal conversion performances. Carbon 2022, 197, 87–97.

    Article  CAS  Google Scholar 

  43. Jiang, Y. Q.; Ru, X. L.; Che, W. B.; Jiang, Z. H.; Chen, H. L.; Hou, J. F.; Yu, Y. M. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B: Eng. 2022, 229, 109460.

    Article  CAS  Google Scholar 

  44. Chu, N.; Luo, C. J.; Chen, X. S.; Li, L. X.; Liang, C. B.; Chao, M.; Yan, L. K. Ti3C2Tx MXene/polyimide composites film with excellent mechanical properties and electromagnetic interference shielding properties. J. Alloys Compd. 2023, 955, 170241.

    Article  CAS  Google Scholar 

  45. Song, W. L.; Guan, X. T.; Fan, L. Z.; Cao, W. Q.; Wang, C. Y.; Zhao, Q. L.; Cao, M. S. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 2015, 3, 2097–2107.

    Article  CAS  Google Scholar 

  46. Li, Y.; Pei, X. L.; Shen, B.; Zhai, W. T.; Zhang, L. H.; Zheng, W. G. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 2015, 5, 24342–24351.

    Article  CAS  ADS  Google Scholar 

  47. Li, X. L.; Sheng, X. X.; Fang, Y.; Hu, X. P.; Gong, S.; Sheng, M. J.; Lu, X.; Qu, J. P. Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultrahigh electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 2023, 33, 2212776.

    Article  CAS  Google Scholar 

  48. Zhao, W. W.; Xu, H. T.; Zhao, J. D.; Zhu, X. J.; Lu, Y. Y.; Ding, C. B.; He, W. J.; Bian, J.; Liu, L. L.; Ma, L. F. et al. Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding. Chem. Eng. J. 2022, 437, 135266.

    Article  CAS  Google Scholar 

  49. Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

    Article  CAS  PubMed  Google Scholar 

  50. Guo, Z. Z.; Ren, P. G.; Wang, J.; Hou, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N,S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

    Article  CAS  Google Scholar 

  51. Li, D. D.; Pu, X.; Hu, P.; Han, M. N.; Xin, W.; Ma, M. G. Multifunctional Ti3C2Tx MXene/montmorillonite/cellulose nanofibril films for electromagnetic interference shielding, photothermal conversion, and thermal insulation. Cellulose 2023, 30, 3793–3805.

    Article  CAS  Google Scholar 

  52. Zhang, H. M.; Zhang, G. C.; Gao, Q.; Tang, M.; Ma, Z. L.; Qin, J. B.; Wang, M. Y.; Kim, J. K. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 2020, 379, 122304.

    Article  Google Scholar 

  53. Guo, Y. B.; Vokhidova, N. R.; Wang, Q.; Lan, B. J.; Lu, Y. X. Lightweight and thermal insulation fabric-based composite foam for high-performance electromagnetic interference shielding. Mater. Chem. Phys. 2023, 303, 127787.

    Article  CAS  Google Scholar 

  54. Patle, V. K.; Mehta, Y.; Dwivedi, N.; Mondal, D. P.; Srivastava, A. K.; Kumar, R. Thermal insulating and fire-retardant lightweight carbon-slag composite foams towards absorption dominated electromagnetic interference shielding. Sustain. Mater. Technol. 2022, 33, e00453.

    CAS  Google Scholar 

  55. Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23, 100593.

    Article  Google Scholar 

  56. Liu, C. X.; Ma, Y. N.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, Z. X.; Zhang, G. X.; Chen, W. T.; Wang, J. X.; Zhang, B. L.; Zhang, Q. Y. Robust biomimetic Ti3C2T nanocomposite films enhanced by mussel-inspired polymer for highly efficient electromagnetic shielding and thermal camouflage. Carbon 2022, 196, 410–421.

    Article  CAS  Google Scholar 

  58. Tian, L.; Gu, H. D.; Zhang, Q. Q.; You, X.; Wang, M. M.; Yang, J. S.; Dong, S. M. Multifunctional hierarchical metamaterial for thermal insulation and electromagnetic interference shielding at elevated temperatures. ACS Nano 2023, 17, 12673–12683.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, F.; Yao, J. R.; Jin, L. Q.; Huyan, W. J.; Zhou, J. T.; Yao, Z. J.; Liu, P. J.; Tao, X. W. Multifunctional Ti3C2T MXnne/raamid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B: Eng. 2022, 243, 110161.

    Article  CAS  Google Scholar 

  60. Bai, F.; Wu, J. T.; Gong, G. M.; Guo, L. A flexible, sandwiched high-performance super-insulation fabric. J. Mater. Chem. A 2015, 3, 13198–13202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073010 and 52373259) and China Postdoctoral Science Foundation (No. 2023M740175). We would like to thank the researchers in the Shiyanjia Lab (www.shiyanjia.com) for their XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juntao Wu, Yongqiang Guo or Guang-Sheng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Wu, J., Zhang, S. et al. Porous Ti3C2Tx MXene nanosheets sandwiched between polyimide fiber mats for electromagnetic interference shielding. Nano Res. 17, 2070–2078 (2024). https://doi.org/10.1007/s12274-023-6405-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6405-4

Keywords

Navigation