1932

Abstract

Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-081522-031439
2024-01-29
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-081522-031439.html?itemId=/content/journals/10.1146/annurev-med-081522-031439&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gandaglia G, Leni R, Bray F et al. 2021. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol. 4:87792
    [Google Scholar]
  2. 2.
    Sweeney CJ, Chen Y-H, Carducci M et al. 2015. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373:73746
    [Google Scholar]
  3. 3.
    James ND, de Bono JS, Spears MR et al. 2017. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377:33851
    [Google Scholar]
  4. 4.
    Antonarakis ES, Gomella LG, Petrylak DP. 2020. When and how to use PARP inhibitors in prostate cancer: a systematic review of the literature with an update on on-going trials. Eur. Urol. Oncol. 3:594611
    [Google Scholar]
  5. 5.
    Horoszewicz JS, Kawinski E, Murphy G. 1987. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 7:92735
    [Google Scholar]
  6. 6.
    Parsi M, Desai MH, Desai D et al. 2021. PSMA: a game changer in the diagnosis and treatment of advanced prostate cancer. Med. Oncol. 38:89
    [Google Scholar]
  7. 7.
    Roberts MJ, Maurer T, Perera M et al. 2023. Using PSMA imaging for prognostication in localized and advanced prostate cancer. Nat. Rev. Urol. 20:2347
    [Google Scholar]
  8. 8.
    Backhaus P, Noto B, Avramovic N et al. 2018. Targeting PSMA by radioligands in non-prostate disease—current status and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 45:86077
    [Google Scholar]
  9. 9.
    van der Gaag S, Bartelink IH, Vis AN et al. 2022. Pharmacological optimization of PSMA-based radioligand therapy. Biomedicines 10:3020
    [Google Scholar]
  10. 10.
    Bavelaar BM, Lee BQ, Gill MR et al. 2018. Subcellular targeting of theranostic radionuclides. Front. Pharmacol. 9:996
    [Google Scholar]
  11. 11.
    Manyak MJ, Hinkle GH, Olsen JO et al. 1999. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology 54:105863
    [Google Scholar]
  12. 12.
    Kuppermann D, Calais J, Marks LS. 2022. Imaging prostate cancer: clinical utility of prostate-specific membrane antigen. J. Urol. 207:76978
    [Google Scholar]
  13. 13.
    Bander NH, Trabulsi EJ, Kostakoglu L et al. 2003. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170:171721
    [Google Scholar]
  14. 13a.
    Pandit-Taskar N, O'Donoghue JA, Durack JCet al 2015. A phase I/II study for analytic validation of 89Zr-J591 immunoPET as a molecular imaging agent for metastatic prostate cancer. Clin. Cancer Res 21:527785
    [Google Scholar]
  15. 14.
    Bander NH, Milowsky MI, Nanus DM et al. 2005. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J. Clin. Oncol. 23:4591601
    [Google Scholar]
  16. 15.
    Eder M, Schäfer M, Bauder-Wüst U et al. 2012. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjugate Chem. 23:68897
    [Google Scholar]
  17. 16.
    Eder M, Eisenhut M, Babich J, Haberkorn U. 2013. PSMA as a target for radiolabelled small molecules. Eur. J. Nucl. Med. Mol. Imaging 40:81923
    [Google Scholar]
  18. 17.
    Afshar-Oromieh A, Haberkorn U, Eder M et al. 2012. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging 39:108586
    [Google Scholar]
  19. 18.
    Hope TA, Eiber M, Armstrong WR et al. 2021. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol. 7:163542
    [Google Scholar]
  20. 19.
    Pienta KJ, Gorin MA, Rowe SP et al. 2021. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206:5261
    [Google Scholar]
  21. 20.
    Morris MJ, Rowe SP, Gorin MA et al. 2021. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin. Cancer Res. 27:367482
    [Google Scholar]
  22. 21.
    Fendler WP, Weber M, Iravani A et al. 2019. Prostate-specific membrane antigen ligand positron emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin. Cancer Res. 25:744854
    [Google Scholar]
  23. 22.
    Treglia G, Annunziata S, Pizzuto DA et al. 2019. Detection rate of 18F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancers 11:710
    [Google Scholar]
  24. 23.
    Perera M, Papa N, Roberts M et al. 2020. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. 77:40317
    [Google Scholar]
  25. 24.
    Dietlein M, Kobe C, Kuhnert G et al. 2015. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol. Imaging Biol. 17:57584
    [Google Scholar]
  26. 25.
    Schaeffer EM, Srinivas S, Adra N et al. 2022. NCCN Guidelines® insights: prostate cancer, version 1.2023: featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. 20:128898
    [Google Scholar]
  27. 26.
    Lowrance WT, Breau RH, Chou R et al. 2021. Advanced prostate cancer: AUA/ASTRO/SUO guideline part II. J. Urol. 205:2229
    [Google Scholar]
  28. 27.
    Lowrance WT, Breau RH, Chou R et al. 2021. Advanced prostate cancer: AUA/ASTRO/SUO guideline part I. J. Urol. 205:1421
    [Google Scholar]
  29. 28.
    Mottet N, van den Bergh RC, Briers E et al. 2021. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79:24362
    [Google Scholar]
  30. 29.
    Parker C, Castro E, Fizazi K et al. 2020. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31:111934
    [Google Scholar]
  31. 30.
    Seifert R, Emmett L, Rowe SP et al. 2023. Second version of the prostate cancer molecular imaging standardized evaluation framework including response evaluation for clinical trials (PROMISE V2). Eur. Urol. 83:40512
    [Google Scholar]
  32. 31.
    Hope TA, Aggarwal R, Chee B et al. 2017. Impact of 68Ga-PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J. Nucl. Med. 58:195661
    [Google Scholar]
  33. 32.
    Calais J, Fendler WP, Eiber M et al. 2018. Impact of 68Ga-PSMA-11 PET/CT on the management of prostate cancer patients with biochemical recurrence. J. Nucl. Med. 59:43441
    [Google Scholar]
  34. 33.
    Han S, Woo S, Kim YJ, Suh CH. 2018. Impact of 68Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur. Urol. 74:17990
    [Google Scholar]
  35. 34.
    Waller J, Flavell R, Heath CL. 2020. High accuracy of PSMA PET in initial staging of high-risk prostate cancer. Radiol. Imaging Cancer 2:e204025
    [Google Scholar]
  36. 35.
    Hirmas N, Al-Ibraheem A, Herrmann K et al. 2019. [68Ga]PSMA PET/CT improves initial staging and management plan of patients with high-risk prostate cancer. Mol. Imaging Biol. 21:57481
    [Google Scholar]
  37. 36.
    Emmett L, Buteau J, Papa N et al. 2021. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): a prospective multicentre study. Eur. Urol. 80:68289
    [Google Scholar]
  38. 37.
    Amin A, Blazevski A, Thompson J et al. 2020. Protocol for the PRIMARY clinical trial, a prospective, multicentre, cross-sectional study of the additive diagnostic value of gallium-68 prostate-specific membrane antigen positron-emission tomography/computed tomography to multiparametric magnetic resonance imaging in the diagnostic setting for men being investigated for prostate cancer. BJU Int. 125:51524
    [Google Scholar]
  39. 38.
    Sonni I, Felker ER, Lenis AT et al. 2022. Head-to-head comparison of 68Ga-PSMA-11 PET/CT and mpMRI with a histopathology gold standard in the detection, intraprostatic localization, and determination of local extension of primary prostate cancer: results from a prospective single-center imaging trial. J. Nucl. Med. 63:84754
    [Google Scholar]
  40. 39.
    Simopoulos DN, Natarajan S, Jones TA et al. 2017. Targeted prostate biopsy using 68Gallium PSMA-PET/CT for image guidance. Urol. Case Rep. 14:1114
    [Google Scholar]
  41. 40.
    Barbato F, Fendler WP, Rauscher I et al. 2021. PSMA PET for the assessment of metastatic hormone-sensitive prostate cancer volume of disease. J. Nucl. Med. 62:174750
    [Google Scholar]
  42. 41.
    Henkenberens C, Derlin T, Bengel F et al. 2021. Efficacy of PSMA PET-guided radiotherapy for oligometastatic castrate-resistant prostate cancer. Front. Oncol. 11:664225
    [Google Scholar]
  43. 42.
    Parker CC, James ND, Brawley CD et al. 2018. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 392:235366
    [Google Scholar]
  44. 43.
    Poulsen MH, Rasmussen J, Edenbrandt L et al. 2016. Bone Scan Index predicts outcome in patients with metastatic hormone-sensitive prostate cancer. BJU Int. 117:74853
    [Google Scholar]
  45. 44.
    Klyuzhin IS, Chaussé G, Bloise I et al. 2022. PSMA-Hornet: fully-automated, multi-target segmentation of healthy organs in PSMA PET/CT images. medRxiv 02.22270344. https://doi.org/10.1101/2022.02.02.22270344
    [Crossref]
  46. 45.
    Seifert R, Herrmann K, Kleesiek J et al. 2020. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J. Nucl. Med. 61:178692
    [Google Scholar]
  47. 46.
    Seifert R, Rasul S, Seitzer K et al. 2023. A prognostic risk score for prostate cancer based on PSMA PET–derived organ-specific tumor volumes. Radiology 307:e222010
    [Google Scholar]
  48. 47.
    Seifert R, Kessel K, Schlack K et al. 2021. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur. J. Nucl. Med. Mol. Imaging 48:120010
    [Google Scholar]
  49. 48.
    Gafita A, Calais J, Grogan TR et al. 2021. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 22:111525
    [Google Scholar]
  50. 49.
    UCLA Health 2023. LuPSMA Prognostic Model https://www.uclahealth.org/medical-services/nuclear-medicine/research/prostate-cancer-nomogram. Accessed July 26, 2023
  51. 50.
    Hotta M, Gafita A, Murthy V et al. 2023. PSMA PET tumor–to–salivary gland ratio to predict response to [177Lu]PSMA radioligand therapy: an international multicenter retrospective study. J. Nucl. Med. 64:102429
    [Google Scholar]
  52. 51.
    Hotta M, Gafita A, Murthy V et al. 2022. PSMA PET tumor-to-salivary glands ratio (PSG score) to predict response to Lu-177 PSMA radioligand therapy: an international multicenter retrospective study Paper presented at Annual Meeting of the American Society of Clinical Oncology June 3–7 Chicago, IL:
  53. 52.
    Seitz AK, Rauscher I, Haller B et al. 2018. Preliminary results on response assessment using 68Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nuclear Med. Mol. Imaging 45:60212
    [Google Scholar]
  54. 53.
    Grubmüller B, Rasul S, Baltzer P et al. 2020. Response assessment using [68Ga]Ga-PSMA ligand PET in patients undergoing systemic therapy for metastatic castration-resistant prostate cancer. Prostate 80:7482
    [Google Scholar]
  55. 54.
    Shagera QA, Artigas C, Karfis I et al. 2022. 68Ga-PSMA PET/CT for response assessment and outcome prediction in metastatic prostate cancer patients treated with taxane-based chemotherapy. J. Nuclear Med. 63:119198
    [Google Scholar]
  56. 55.
    Vaz S, Hadaschik B, Gabriel M et al. 2020. Influence of androgen deprivation therapy on PSMA expression and PSMA-ligand PET imaging of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 47:915
    [Google Scholar]
  57. 56.
    Fanti S, Goffin K, Hadaschik BA et al. 2021. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 48:46976
    [Google Scholar]
  58. 57.
    Michalski K, Klein C, Brüggemann Tet al 2021. Assessing response to 177Lu-PSMA radioligand therapy using modified PSMA PET progression criteria. J. Nucl. Med 62:12174146
    [Google Scholar]
  59. 58.
    Gafita A, Rauscher I, Fendler WP et al. 2022. Measuring response in metastatic castration-resistant prostate cancer using PSMA PET/CT: comparison of RECIST 1.1, aPCWG3, aPERCIST, PPP, and RECIP 1.0 criteria. Eur. J. Nucl. Med. Mol. Imaging 49:427181
    [Google Scholar]
  60. 59.
    Gafita A, Djaileb L, Rauscher I et al. 2023. Response evaluation criteria in PSMA PET/CT (RECIP 1.0) in metastatic castration-resistant prostate cancer. Radiology 308:e222148
    [Google Scholar]
  61. 60.
    Gafita A, Rauscher I, Weber M et al. 2022. Novel framework for treatment response evaluation using PSMA PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP 1.0): an international multicenter study. J. Nucl. Med. 63:165158
    [Google Scholar]
  62. 61.
    Gafita A, Djaileb L, Rauscher I et al. 2023. Practical RECIP: visual assessment of response evaluation criteria in PSMA-PET 1.0. Méd. Nucl. 47:4142
    [Google Scholar]
  63. 62.
    Milowsky MI, Nanus DM, Kostakoglu L et al. 2004. Phase I trial of yttrium-90–labeled anti–prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J. Clin. Oncol. 22:252231
    [Google Scholar]
  64. 63.
    Tagawa ST, Vallabhajosula S, Christos PJ et al. 2019. Phase 1/2 study of fractionated dose lutetium-177–labeled anti–prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer 125:256169
    [Google Scholar]
  65. 64.
    Tagawa ST, Akhtar NH, Nikolopoulou A et al. 2013. Bone marrow recovery and subsequent chemotherapy following radiolabeled anti-prostate-specific membrane antigen monoclonal antibody J591 in men with metastatic castration-resistant prostate cancer. Front. Oncol. 3:214
    [Google Scholar]
  66. 65.
    Antonini P, Meyrick D, Hayward C. 2022. 177Lu-DOTA-TLX591 safety, biodistribution and dosimetry study (ProstACT-SELECT). J. Clin. Oncol. 40:TPS5109 Abstr. )
    [Google Scholar]
  67. 66.
    Oh SW, Suh M, Cheon GJ. 2022. Current status of PSMA-targeted radioligand therapy in the era of radiopharmaceutical therapy acquiring marketing authorization. Nucl. Med. Mol. Imaging 56:26381
    [Google Scholar]
  68. 67.
    Sartor AO, Laidley D, Pouliot F et al. 2021. A multicenter, randomized, controlled phase II study: efficacy and safety of PSMA-targeted radioligand therapy I-131–1095 (1095) plus enzalutamide (enza) in 18F-DCFPyL PSMA scan avid, metastatic castration-resistant prostate cancer (mCRPC) patients post-abiraterone (abi) progression (ARROW). J. Clin. Oncol. 39:TPS187 Abstr. )
    [Google Scholar]
  69. 68.
    Afshar-Oromieh A, Haberkorn U, Zechmann C et al. 2017. Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. Eur. J. Nucl. Med. Mol. Imaging 44:95059
    [Google Scholar]
  70. 69.
    Afshar-Oromieh A, Hetzheim H, Kratochwil C et al. 2015. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J. Nucl. Med. 56:1697705
    [Google Scholar]
  71. 70.
    Kratochwil C, Giesel FL, Stefanova M et al. 2016. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J. Nucl. Med. 57:117076
    [Google Scholar]
  72. 71.
    Rahbar K, Ahmadzadehfar H, Kratochwil C et al. 2017. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J. Nucl. Med. 58:8590
    [Google Scholar]
  73. 72.
    Ahmadzadehfar H, Wegen S, Yordanova A et al. 2017. Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [177Lu]Lu-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 44:144854
    [Google Scholar]
  74. 73.
    Calais J, Czernin J, Thin P et al. 2021. Safety of PSMA-targeted molecular radioligand therapy with 177Lu-PSMA-617: results from the prospective multicenter phase 2 trial RESIST-PC (NCT03042312). J. Nucl. Med. 62:144756
    [Google Scholar]
  75. 74.
    Calais J, Gafita A, Eiber M et al. 2021. Prospective phase 2 trial of PSMA-targeted molecular RadiothErapy with 177Lu-PSMA-617 for metastatic castration-reSISTant Prostate Cancer (RESIST-PC): efficacy results of the UCLA cohort. J. Nucl. Med. 62:144046
    [Google Scholar]
  76. 75.
    Sartor O, De Bono J, Chi KN et al. 2021. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385:1091103
    [Google Scholar]
  77. 76.
    Fizazi K, Herrmann K, Krause BJ et al. 2023. Health-related quality of life and pain outcomes with [177Lu]Lu-PSMA-617 plus standard of care versus standard of care in patients with metastatic castration-resistant prostate cancer (VISION): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 24:597610
    [Google Scholar]
  78. 77.
    Baum RP, Kulkarni HR, Schuchardt C et al. 2016. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J. Nucl. Med. 57:100613
    [Google Scholar]
  79. 78.
    Heck MM, Tauber R, Schwaiger S et al. 2019. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur. Urol. 75:92026
    [Google Scholar]
  80. 79.
    Hartrampf PE, Weinzierl F-X, Buck AK et al. 2022. Matched-pair analysis of [177Lu]Lu-PSMA I&T and [177Lu]Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 49:326976
    [Google Scholar]
  81. 80.
    Hofman MS, Emmett L, Sandhu S et al. 2021. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397:797804
    [Google Scholar]
  82. 81.
    Rahbar K, Essler M, Pabst KM et al. 2023. Safety and survival outcomes of 177Lu-prostate-specific membrane antigen therapy in patients with metastatic castration-resistant prostate cancer with prior 223Ra treatment: the RALU study. J. Nucl. Med. 64:57478
    [Google Scholar]
  83. 82.
    Hotta M, Gafita A, Czernin J, Calais J. 2022. Outcome of patients with PSMA PET/CT screen failure by VISION criteria and treated with 177Lu-PSMA therapy: a multicenter retrospective analysis. J. Nucl. Med. 63:148488
    [Google Scholar]
  84. 83.
    McGeorge S, Kwok M, Jiang A et al. 2021. Dual-tracer positron-emission tomography using prostate-specific membrane antigen and fluorodeoxyglucose for staging of prostate cancer: a systematic review. Adv. Urol. 2021:1544208
    [Google Scholar]
  85. 84.
    Calais J, Eulau SM, Gardner L et al. 2023. Incorporating radioligand therapy in clinical practice in the United States for patients with prostate cancer. Cancer Treatment Rev. 115:102524
    [Google Scholar]
  86. 85.
    Kratochwil C, Fendler WP, Eiber M et al. 2023. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 50:283045
    [Google Scholar]
  87. 86.
    Gudenkauf LM, Chavez M, Maconi ML et al. 2023. Developing a novel patient reported outcomes measure for prostate cancer patients receiving radionuclide therapy. J. Nucl. Med. 64:86972
    [Google Scholar]
  88. 87.
    Yordanova A, Linden P, Hauser S et al. 2019. Outcome and safety of rechallenge [177Lu]Lu-PSMA-617 in patients with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 46:107380
    [Google Scholar]
  89. 88.
    Derlin T, Widjaja L, Werner RA, Bengel FM. 2023. 177Lu-PSMA for extended treatment of metastatic castration-resistant prostate cancer. J. Nuclear Med. 64:5458
    [Google Scholar]
  90. 89.
    Emmett L, John N, Pathmanandavel S et al. 2023. Patient outcomes following a response biomarker-guided approach to treatment using 177Lu-PSMA-I&T in men with metastatic castrate-resistant prostate cancer (Re-SPECT). Ther. Adv. Med. Oncol. 15:17588359231156392
    [Google Scholar]
  91. 90.
    Yordanova A, Eppard E, Kürpig S et al. 2017. Theranostics in nuclear medicine practice. OncoTargets Ther. 10:4821
    [Google Scholar]
  92. 91.
    McDevitt MR, Ma D, Lai LT et al. 2001. Tumor therapy with targeted atomic nanogenerators. Science 294:153740
    [Google Scholar]
  93. 92.
    Lawal IO, Morgenstern A, Vorster M et al. 2022. Hematologic toxicity profile and efficacy of [225Ac]Ac-PSMA-617 α-radioligand therapy of patients with extensive skeletal metastases of castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 49:358192
    [Google Scholar]
  94. 93.
    Sathekge M, Bruchertseifer F, Knoesen O et al. 2019. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur. J. Nucl. Med. Mol. Imaging 46:12938
    [Google Scholar]
  95. 94.
    Sathekge M, Bruchertseifer F, Vorster M et al. 2022. mCRPC patients receiving 225Ac-PSMA-617 therapy in the post–androgen deprivation therapy setting: response to treatment and survival analysis. J. Nucl. Med. 63:1496502
    [Google Scholar]
  96. 95.
    Feuerecker B, Tauber R, Knorr K et al. 2021. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur. Urol. 79:34350
    [Google Scholar]
  97. 96.
    Delker A, Schleske M, Liubchenko G et al. 2023. Biodistribution and dosimetry for combined [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging. Eur. J. Nucl. Med. Mol. Imaging 50:128090
    [Google Scholar]
  98. 97.
    Kratochwil C, Haberkorn U, Giesel FL. 2020. 225Ac-PSMA-617 for therapy of prostate cancer. Semin. Nucl. Med. 50:13340
    [Google Scholar]
  99. 98.
    Tönnesmann R, Meyer PT, Eder M, Baranski A-C. 2019. [177Lu]Lu-PSMA-617 salivary gland uptake characterized by quantitative in vitro autoradiography. Pharmaceuticals 12:18
    [Google Scholar]
  100. 99.
    Tagawa ST, Osborne J, Dallos M et al. 2022. Phase I/II trial of pembrolizumab and AR signaling inhibitor +/- 225Ac-J591 for chemo-naive metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40:TPS216 Abstr. )
    [Google Scholar]
  101. 100.
    Dos Santos JC, Beijer B, Bauder-Wüst U et al. 2020. Development of novel PSMA ligands for imaging and therapy with copper isotopes. J. Nucl. Med. 61:7079
    [Google Scholar]
  102. 101.
    Buteau JP, Kostos LK, Alipour R et al. 2023. VIOLET: a phase I/II trial evaluation of radioligand treatment in men with metastatic castration-resistant prostate cancer with [161Tb] Tb-PSMA-I&T. J. Clin. Oncol. 41:TPS281 Abstr. )
    [Google Scholar]
  103. 102.
    Gafita A, Marcus C, Kostos L et al. 2022. Predictors and real-world use of prostate-specific radioligand therapy: PSMA and beyond. Am. Soc. Clin. Oncol. Educ. Book 42:36682
    [Google Scholar]
  104. 103.
    Rosar F, Neher R, Burgard C et al. 2022. Upregulation of PSMA expression by enzalutamide in patients with advanced mCRPC. Cancers 14:1696
    [Google Scholar]
  105. 104.
    Ramnaraign B, Sartor O. 2023. PSMA-targeted radiopharmaceuticals in prostate cancer: current data and new trials. Oncologist 28:392401
    [Google Scholar]
  106. 105.
    Giraudet A-L, Kryza D, Hofman M et al. 2021. PSMA targeting in metastatic castration-resistant prostate cancer: Where are we and where are we going?. Ther. Adv. Med. Oncol. 13:17588359211053898
    [Google Scholar]
  107. 106.
    Mjaess G, Aoun F, Rassy E et al. 2022. Antibody-drug conjugates in prostate cancer: Where are we?. Clin. Genitourin. Cancer 21:17174
    [Google Scholar]
  108. 107.
    Yaghoubi S, Karimi MH, Lotfinia M et al. 2020. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J. Cell. Physiol. 235:3164
    [Google Scholar]
  109. 108.
    Petrylak DP, Vogelzang NJ, Chatta K et al. 2020. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study. Prostate 80:99108
    [Google Scholar]
  110. 109.
    De Bono JS, Fleming MT, Wang JS-Z et al. 2020. MEDI3726, a prostate-specific membrane antigen (PSMA)-targeted antibody-drug conjugate (ADC) in mCRPC after failure of abiraterone or enzalutamide. J. Clin. Oncol. 38:99 Abstr. )
    [Google Scholar]
  111. 110.
    Zhang C, Liu J, Zhong JF, Zhang X. 2017. Engineering CAR-T cells. Biomarker Res. 5:22
    [Google Scholar]
  112. 111.
    Junghans RP, Ma Q, Rathore R et al. 2016. Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76:125770
    [Google Scholar]
  113. 112.
    Narayan V, Barber-Rotenberg JS, Jung I-Y et al. 2022. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28:72434
    [Google Scholar]
  114. 113.
    McKean M, Carabasi MH, Stein MN et al. 2022. Safety and early efficacy results from a phase 1, multicenter trial of PSMA-targeted armored CAR T cells in patients with advanced mCRPC. J. Clin. Oncol. 40:94 Abstr. )
    [Google Scholar]
  115. 114.
    Slovin SF, Dorff TB, Falchook GS et al. 2022. Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40:98 Abstr. )
    [Google Scholar]
  116. 115.
    Heitmann JS, Pfluegler M, Jung G, Salih HR. 2021. Bispecific antibodies in prostate cancer therapy: current status and perspectives. Cancers 13:549
    [Google Scholar]
  117. 116.
    Dorff TB, Narayan V, Forman SJ et al. 2022. Novel redirected T-cell immunotherapies for advanced prostate cancer. Clin. Cancer Res. 28:57684
    [Google Scholar]
  118. 117.
    Paweletz KL, Li S, Bailis JM, Juan G. 2020. Combination of AMG 160, a PSMA × CD3 half-life extended bispecific T-cell engager (HLE BiTE) immune therapy, with an anti-PD-1 antibody in prostate cancer (PCa). J. Clin. Oncol. 38:155 Abstr. )
    [Google Scholar]
  119. 118.
    Gottschalk R, Miller R, Woodruff B et al. 2022. APVO442 is a distinct PSMA × CD3 targeted bispecific candidate designed to optimize T cell fitness and distribution to solid tumors. Cancer Res. 82:3434
    [Google Scholar]
  120. 119.
    Lim EA, Schweizer MT, Chi KN et al. 2022. Safety and preliminary clinical activity of JNJ-63898081 (JNJ-081), a PSMA and CD3 bispecific antibody, for the treatment of metastatic castrate-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40:279 Abstr. )
    [Google Scholar]
  121. 120.
    Hummel H-D, Kufer P, Grüllich C et al. 2019. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 37:5034 Abstr. )
    [Google Scholar]
  122. 121.
    Stein MN, Zhang J, Kelly WK et al. 2023. Preliminary results from a phase 1/2 study of co-stimulatory bispecific PSMAxCD28 antibody REGN5678 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 41:156 Abstr. )
    [Google Scholar]
  123. 122.
    Zhang J, Stein MN, Kelly WK et al. 2021. A phase I/II study of REGN5678 (Anti-PSMAxCD28, a costimulatory bispecific antibody) with cemiplimab (anti–PD-1) in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 39:TPS174 Abstr. )
    [Google Scholar]
/content/journals/10.1146/annurev-med-081522-031439
Loading
/content/journals/10.1146/annurev-med-081522-031439
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error