Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental and social inequities in continental France: an analysis of exposure to heat, air pollution, and lack of vegetation

Abstract

Background

Cumulative environmental exposures and social deprivation increase health vulnerability and limit the capacity of populations to adapt to climate change.

Objective

Our study aimed at providing a fine-scale characterization of exposure to heat, air pollution, and lack of vegetation in continental France between 2000 and 2018, describing spatiotemporal trends and environmental hotspots (i.e., areas that cumulate the highest levels of overexposure), and exploring any associations with social deprivation.

Methods

The European (EDI) and French (FDep) social deprivation indices, the normalized difference vegetation index, daily ambient temperatures, particulate matter (PM2.5 and PM10), nitrogen dioxide, and ozone (O3) concentrations were estimated for 48,185 French census districts. Reference values were chosen to characterize (over-)exposure. Hotspots were defined as the areas cumulating the highest overexposure to temperature, air pollution, and lack of vegetation. Associations between heat overexposure or hotspots and social deprivation were assessed using logistic regressions.

Results

Overexposure to heat was higher in 2015–2018 compared with 2000–2014. Exposure to all air pollutants except for O3 decreased during the study period. In 2018, more than 79% of the urban census districts exceeded the 2021 WHO air quality guidelines. The evolution of vegetation density between 2000 and 2018 was heterogeneous across continental France. In urban areas, the most deprived census districts were at a higher risk of being hotspots (odds ratio (OR): 10.86, 95% CI: 9.87–11.98 using EDI and OR: 1.07, 95% CI: 1.04–1.11 using FDep).

Impact statement

We studied cumulative environmental exposures and social deprivation in French census districts. The 2015–2018 period showed the highest overexposure to heat between 2000 and 2018. In 2018, the air quality did not meet the 2021 WHO guidelines in most census districts and 8.6 million people lived in environmental hotspots. Highly socially deprived urban areas had a higher risk of being in a hotspot. This study proposes for the first time, a methodology to identify hotspots of exposure to heat, air pollution, and lack of vegetation and their associations with social deprivation at a national level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal evolution of the exposures between 2000 and 2018 in urban and rural IRIS in continental France.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are being made available on htts://www.data.gouv.fr. They are also available from the corresponding author on reasonable request.

References

  1. Ganzleben C, Kazmierczak A. Leaving no one behind – understanding environmental inequality in Europe. Environ Health. 2020;19:57.

    Article  PubMed  PubMed Central  Google Scholar 

  2. EEA. Unequal exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe. Copenhagen: EEA; 2018. Report No.: 22.

  3. Hsu A, Sheriff G, Chakraborty T, Manya D. Disproportionate exposure to urban heat island intensity across major US cities. Nat Commun. 2021;12:2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venter ZS, Figari H, Krange O, Gundersen V. Environmental justice in a very green city: Spatial inequality in exposure to urban nature, air pollution and heat in Oslo, Norway. Sci Total Environ. 2023;858:160193.

    Article  CAS  PubMed  Google Scholar 

  5. Schüle SA, Hilz LK, Dreger S, Bolte G. Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region. Int J Environ Res Public Health [Internet]. 2019;16:1216.

    Article  PubMed  Google Scholar 

  6. Padilla CM, Kihal-Talantikite W, Vieira VM, Rossello P, Nir GL, Zmirou-Navier D, et al. Air quality and social deprivation in four French metropolitan areas—A localized spatio-temporal environmental inequality analysis. Environ Res. 2014;134:315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brunt H, Barnes J, Jones SJ, Longhurst JWS, Scally G, Hayes E. Air pollution, deprivation and health: understanding relationships to add value to local air quality management policy and practice in Wales, UK. J Public Health. 2017;39:485–97.

    CAS  Google Scholar 

  8. Ebi KL, Capon A, Berry P, Broderick C, de Dear R, Havenith G, et al. Hot weather and heat extremes: health risks. Lancet. 2021;398:698–708.

    Article  PubMed  Google Scholar 

  9. EEA. Healthy environment, healthy lives: how the environment influences health and well-being in Europe. Copenhagen; 2020. Report No.: 21.

  10. Son J-Y, Liu JC, Bell ML. Temperature-related mortality: a systematic review and investigation of effect modifiers. Environ Res Lett. 2019;14:073004.

    Article  Google Scholar 

  11. Analitis A, De’ Donato F, Scortichini M, Lanki T, Basagana X, Ballester F, et al. Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project. Int J Environ Res Public Health [Internet]. 2018;15:1856.

    Article  PubMed  Google Scholar 

  12. Pascal M, Goria S, Wagner V, Sabastia M, Guillet A, Cordeau E, et al. Greening is a promising but likely insufficient adaptation strategy to limit the health impacts of extreme heat. Environ Int. 2021;151:106441.

    Article  PubMed  Google Scholar 

  13. Schinasi LH, Benmarhnia T, De Roos AJ. Modification of the association between high ambient temperature and health by urban microclimate indicators: A systematic review and meta-analysis. Environ Res. 2018;161:168–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar P, Druckman A, Gallagher J, Gatersleben B, Allison S, Eisenman TS, et al. The nexus between air pollution, green infrastructure and human health. Environ Int. 2019;133:105181.

    Article  PubMed  Google Scholar 

  15. WHO. Urban green spaces and health. A review of evidence. Copenhagen: WHO Regional Office for Europe; 2016.

  16. Lalloué B, Monnez JM, Padilla C, Kihal W, Zmirou-Navier D, Deguen S. Data analysis techniques: a tool for cumulative exposure assessment. J Expo Sci Environ Epidemiol. 2015;25:222–30.

    Article  PubMed  Google Scholar 

  17. Jay O, Capon A, Berry P, Broderick C, de Dear R, Havenith G, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet. 2021;398:709–24.

    Article  PubMed  Google Scholar 

  18. Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ Res. 2017;158:301–17.

    Article  CAS  PubMed  Google Scholar 

  19. Corso M, Pascal M. Agir pour le climat et la qualité de l’air pour la santé de tous. La Rev de l’infirmière. 2020;69:24–6.

    Article  Google Scholar 

  20. Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys. 2015;15:8889–973.

    Article  CAS  Google Scholar 

  21. Insee. IRIS. 2016. Available from: https://www.insee.fr/fr/metadonnees/definition/c1523.

  22. Insee. La grille communale de densité à 4 niveaux. 2022. Available from: https://www.insee.fr/fr/information/2114627.

  23. Insee. Recensement de la population. 2022. Available from: https://www.insee.fr/fr/information/2880845.

  24. Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M, Wavresky P. Les types de climats en France, une construction spatiale. Cybergeo Eur J Geogr. 2010. http://journals.openedition.org/cybergeo/23155.

  25. Hough I, Just AC, Zhou B, Dorman M, Lepeule J, Kloog I. A multi-resolution air temperature model for France from MODIS and Landsat thermal data. Environ Res. 2020;183:109244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson NP, Allred BW, Jones MO, Moreno Á, Kimball JS, Naugle DE, et al. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017;9:863.

    Article  Google Scholar 

  27. Hough I, Sarafian R, Shtein A, Zhou B, Lepeule J, Kloog I. Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France. Atmos Environ. 2021;264:118693.

    Article  CAS  Google Scholar 

  28. Favez O, Cachier H, Sciare J, Le Moullec Y. Characterization and contribution to PM2.5 of semi-volatile aerosols in Paris (France). Atmos Environ. 2007;41:7969–76.

    Article  CAS  Google Scholar 

  29. Real E, Couvidat F, Ung A, Malherbe L, Raux B, Gressent A, et al. Historical reconstruction of background air pollution over France for 2000–2015. Earth Syst Sci Data. 2022;14:2419–43.

    Article  Google Scholar 

  30. Pornet C, Delpierre C, Dejardin O, Grosclaude P, Launay L, Guittet L, et al. Construction of an adaptable European transnational ecological deprivation index: the French version. J Epidemiol Community Health. 2012;66:982–9.

    Article  PubMed  Google Scholar 

  31. Rey G, Jougla E, Fouillet A, Hémon D. Ecological association between a deprivation index and mortality in France over the period 1997–2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death. BMC Public Health. 2009;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gorza M, Eilstein D. Outils élaborés dans la cadre du programme « Inégalités sociales de santé », 2013-2015. Saint-Maurice: Santé publique France; 2018.

  33. Barry Y, Le Strat Y, Azria E, Gorza M, Pilkington H, Vandentorren S, et al. Ability of municipality-level deprivation indices to capture social inequalities in perinatal health in France: A nationwide study using preterm birth and small for gestational age to illustrate their relevance. BMC Public Health. 2022;22:919.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Temam S, Varraso R, Pornet C, Sanchez M, Affret A, Jacquemin B, et al. Ability of ecological deprivation indices to measure social inequalities in a French cohort. BMC Public Health. 2017;17:956.

    Article  PubMed  PubMed Central  Google Scholar 

  35. WHO. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva, Switzerland: World Health Organization; 2021.

  36. Sorel M, Soubeyroux JM, Drouin A, Jourdain S, Kerdoncuff M, Cassaigne B, et al. Normales climatiques 1991-2020. La MétéOrol. 2022;119:73–9.

    Article  Google Scholar 

  37. Ribes A, Boé J, Qasmi S, Dubuisson B, Douville H, Terray L. An updated assessment of past and future warming over France based on a regional observational constraint. Earth Syst Dynam. 2022;13:1397–415.

    Article  Google Scholar 

  38. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cour des comptes. Les politiques de lutte contre la pollution de l’air. Cour des comptes; 2020.

  40. Deguen S, Zmirou-Navier D. Social inequalities resulting from health risks related to ambient air quality—A European review. Eur J Public Health. 2010;20:27–35.

    Article  PubMed  Google Scholar 

  41. Gilthorpe MS, Wilson RC. Rural/urban differences in the association between deprivation and healthcare utilisation. Soc Sci Med. 2003;57:2055–63.

    Article  PubMed  Google Scholar 

  42. Merville O, Launay L, Dejardin O, Rollet Q, Bryère J, Guillaume É, et al. Can an Ecological Index of Deprivation Be Used at the Country Level? The Case of the French Version of the European Deprivation Index (F-EDI). Int J Environ Res Public Health. 2022;19:2311.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pascal M, Yvon JM, Corso M, Blanchard M, De Crouy-Chanel P, Medina S. Conditions for a Meaningful Health Impact Assessment for Local Stakeholders: The Example of the Arve Valley in France. Atmosphere. 2020;11:566.

    Article  CAS  Google Scholar 

  44. Adélaïde L, Medina S, Wagner V, de Crouy-Chanel P, Real E, Colette A, et al. Covid-19 Lockdown in Spring 2020 in France Provided Unexpected Opportunity to Assess Health Impacts of Falls in Air Pollution. Frontiers in Sustainable Cities. 2021;3:643821.

  45. Forceville G, Lemonsu A, Goria S, Stempfelet M, Host S, Alessandrini J-M, et al. Spatial contrasts and temporal changes in fine-scale heat exposure and vulnerability in the Paris region. Sci Total Environ. 2024;906:167476.

    Article  CAS  PubMed  Google Scholar 

  46. Malherbe L, Beauchamp M, Bourin A, Sauvage S. Analyse de tendances nationales en matière de qualité de l’air. 2017.

  47. Bessagnet B, Malherbe L, Aymoz G. Bilan de la première année de mesure des PM10 ajustées en France et évaluation des outils de modélisation. 2008.

  48. The Lancet Countdown. Lancet Countdown: Tracking Progress on Health and Climate change. 2019. Available from: https://www.lancetcountdown.org/data-platform/adaptation-planning-and-resilience-for-health.

  49. INSPQ. Pour une transition juste : tenir compte des inégalités sociales de santé dans l’action climatique. Québec, Canada: INSPQ; 2023.

  50. Gouvernement. Un environnement, une santé: 4ème Plan National Santé Environnement. Gouvernement français; 2021.

  51. MTES. 2ème Plan National d’Adaptation au Changement Climatique. Ministère de la Transition Ecologique et Solidaire; 2018.

Download references

Acknowledgements

This work is part of a PhD thesis associated with the Doctoral Network in Public Health coordinated by the Public Health School EHESP. The authors would like to thank INERIS (French Institute for Industrial Environment and Risks) for commenting on the manuscript and making available in open data the air pollutant concentration data from which the NO2 and O3 concentrations used in this study were taken: https://www.ineris.fr/fr/recherche-appui/risques-chroniques/mesure-prevision-qualite-air/qualite-air-france-metropolitaine. The authors also acknowledge the French League against Cancer (Ligue nationale contre le cancer). The graphical abstract was designed using images from Flaticon.com.

Funding

This work is part of a PhD thesis funded by Santé publique France (French Public Health Agency).

Author information

Authors and Affiliations

Authors

Contributions

LA, MP and JL designed and conceived this study with support from GF. LA conducted the analysis and prepared the original draft of the manuscript with support from MP and JL. IH and ES contributed to data curation. IH, ES, JL and IK acquired the data. LA, IH, ES, GF, GL, LL, MP and JL interpreted the results. IH, ES, GF, IK, GL, LL, MP and JL reviewed the manuscript and provided substantial feedback. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lucie Adélaïde or Johanna Lepeule.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adélaïde, L., Hough, I., Seyve, E. et al. Environmental and social inequities in continental France: an analysis of exposure to heat, air pollution, and lack of vegetation. J Expo Sci Environ Epidemiol (2024). https://doi.org/10.1038/s41370-024-00641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-024-00641-6

Keywords

Search

Quick links