Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cerebellum directly modulates the substantia nigra dopaminergic activity

Abstract

Evidence of direct reciprocal connections between the cerebellum and basal ganglia has challenged the long-held notion that these structures function independently. While anatomical studies have suggested the presence of cerebellar projections to the substantia nigra pars compacta (SNc), the nature and function of these connections (Cb–SNc) is unknown. Here we show, in mice, that Cb–SNc projections form monosynaptic glutamatergic synapses with dopaminergic and non-dopaminergic neurons in the SNc. Optogenetic activation of Cb–SNc axons in the SNc is associated with increased SNc activity, elevated striatal dopamine levels and increased locomotion. During behavior, Cb–SNc projections are bilaterally activated before ambulation and unilateral lever manipulation. Cb–SNc projections show prominent activation for water reward and higher activation for sweet water, suggesting that the pathway also encodes reward value. Thus, the cerebellum directly, rapidly and effectively modulates basal ganglia dopamine levels and conveys information related to movement initiation, vigor and reward processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurons in the SNc respond to activation of cerebellar fibers in vivo.
Fig. 2: Dopaminergic and non-dopaminergic neurons in the SNc respond to monosynaptic glutamatergic cerebellar projections in slices.
Fig. 3: The cerebellum sends monosynaptic bilateral projections to the SNc.
Fig. 4: All three nuclei of the DCN project to the SNc.
Fig. 5: Optogenetic activation of cerebellar axons in the SNc promotes walking.
Fig. 6: Activity of cerebellar axons in the SNc during simple behaviors.
Fig. 7: Reward evaluation in Cb–SNc activity.

Similar content being viewed by others

Data availability

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact K.K.

Code availability

All data reported and the analysis codes used in this study are available upon request.

References

  1. Kelly, R. M. & Strick, P. L. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog. Brain Res. 143, 449–459 (2004).

    PubMed  Google Scholar 

  2. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    CAS  PubMed  Google Scholar 

  4. Percheron, G., Francois, C., Talbi, B., Yelnik, J. & Fenelon, G. The primate motor thalamus. Brain Res. Brain Res. Rev. 22, 93–181 (1996).

    CAS  PubMed  Google Scholar 

  5. Person, A. L., Gale, S. D., Farries, M. A. & Perkel, D. J. Organization of the songbird basal ganglia, including area X. J. Comp. Neurol. 508, 840–866 (2008).

    PubMed  Google Scholar 

  6. Ichinohe, N., Mori, F. & Shoumura, K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 880, 191–197 (2000).

    CAS  PubMed  Google Scholar 

  7. Hoshi, E., Tremblay, L., Feger, J., Carras, P. L. & Strick, P. L. The cerebellum communicates with the basal ganglia. Nat. Neurosci. 8, 1491–1493 (2005).

    CAS  PubMed  Google Scholar 

  8. Bostan, A. C., Dum, R. P. & Strick, P. L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17, 241–254 (2013).

    PubMed Central  PubMed  Google Scholar 

  9. Bostan, A. C., Dum, R. P. & Strick, P. L. The basal ganglia communicate with the cerebellum. Proc. Natl Acad. Sci. USA 107, 8452–8456 (2010).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen, C. H., Fremont, R., Arteaga-Bracho, E. E. & Khodakhah, K. Short latency cerebellar modulation of the basal ganglia. Nat. Neurosci. 17, 1767–1775 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Snider, R. S., Maiti, A. & Snider, S. R. Cerebellar pathways to ventral midbrain and nigra. Exp. Neurol. 53, 714–728 (1976).

    CAS  PubMed  Google Scholar 

  12. Nieoullon, A. & Dusticier, N. Changes in dopamine release in caudate nuclei and substantia nigrae after electrical stimulation of the posterior interposate nucleus of cat cerebellum. Neurosci. Lett. 17, 167–172 (1980).

    CAS  PubMed  Google Scholar 

  13. Nieoullon, A., Cheramy, A. & Glowinski, J. Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res. 148, 143–152 (1978).

    CAS  PubMed  Google Scholar 

  14. Carpenter, M. B. Lesions of the fastigial nuclei in the rhesus monkey. Am. J. Anat. 104, 1–33 (1959).

    CAS  PubMed  Google Scholar 

  15. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

  16. Watabe-Uchida, M., Zhu, L. S., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    CAS  PubMed  Google Scholar 

  17. Fujita, H., Kodama, T. & du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 9, e58613 (2020).

  18. Kwon, H. G. & Jang, S. H. Differences in neural connectivity between the substantia nigra and ventral tegmental area in the human brain. Front. Hum. Neurosci. 8, 41 (2014).

    PubMed Central  PubMed  Google Scholar 

  19. Milardi, D. et al. Extensive direct subcortical cerebellum–basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front. Neuroanat. 10, 29 (2016).

    PubMed Central  PubMed  Google Scholar 

  20. Thach, W. T. Cerebellar output: properties, synthesis and uses. Brain Res. 40, 89–102 (1972).

    CAS  PubMed  Google Scholar 

  21. Anden, N. E., Hfuxe, K., Hamberger, B. & Hokfelt, T. A quantitative study on the nigro-neostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67, 306–312 (1966).

    CAS  PubMed  Google Scholar 

  22. Covey, D. P. & Garris, P. A. Using fast-scan cyclic voltammetry to evaluate striatal dopamine release elicited by subthalamic nucleus stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 3306–3309 (2009).

    PubMed  Google Scholar 

  23. Nissbrandt, H. & Carlsson, A. Turnover of dopamine and dopamine metabolites in rat brain: comparison between striatum and substantia nigra. J. Neurochem. 49, 959–967 (1987).

    CAS  PubMed  Google Scholar 

  24. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

  25. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lacey, M. G., Mercuri, N. B. & North, R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J. Neurosci. 9, 1233–1241 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cho, J. H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC–amygdala circuits. Neuron 80, 1491–1507 (2013).

    CAS  PubMed  Google Scholar 

  28. Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    CAS  PubMed  Google Scholar 

  30. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Reardon, T. R. et al. Rabies virus CVS-N2cΔG strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89, 711–724 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Boecker, H., Jankowski, J., Ditter, P. & Scheef, L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage 39, 1356–1369 (2008).

    CAS  PubMed  Google Scholar 

  34. da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    ADS  PubMed  Google Scholar 

  35. Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  36. Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146 (2001).

    CAS  PubMed  Google Scholar 

  37. Palmiter, R. D. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. N.Y. Acad. Sci. 1129, 35–46 (2008).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  38. Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).

    CAS  PubMed  Google Scholar 

  39. Lu, L., Cao, Y., Tokita, K., Heck, D. H. & Boughter, J. D. Jr. Medial cerebellar nuclear projections and activity patterns link cerebellar output to orofacial and respiratory behavior. Front. Neural Circuits 7, 56 (2013).

    PubMed Central  PubMed  Google Scholar 

  40. Legaria, A. A. et al. Fiber photometry in striatum reflects primarily nonsomatic changes in calcium. Nat. Neurosci. 25, 1124–1128 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Harvey, R. J. & Napper, R. M. Quantitative studies on the mammalian cerebellum. Prog. Neurobiol. 36, 437–463 (1991).

    CAS  PubMed  Google Scholar 

  42. Napper, R. M. & Harvey, R. J. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168–177 (1988).

    CAS  PubMed  Google Scholar 

  43. Ebner, T. J. & Pasalar, S. Cerebellum predicts the future motor state. Cerebellum 7, 583–588 (2008).

    PubMed Central  PubMed  Google Scholar 

  44. Ito, M. Error detection and representation in the olivo–cerebellar system. Front. Neural Circuits 7, 1 (2013).

    PubMed Central  PubMed  Google Scholar 

  45. Cerminara, N. L., Apps, R. & Marple-Horvat, D. E. An internal model of a moving visual target in the lateral cerebellum. J. Physiol. 587, 429–442 (2009).

    CAS  PubMed  Google Scholar 

  46. Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Predicting and correcting ataxia using a model of cerebellar function. Brain 137, 1931–1944 (2014).

    PubMed Central  PubMed  Google Scholar 

  47. Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Predictive modeling by the cerebellum improves proprioception. J. Neurosci. 33, 14301–14306 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Bhanpuri, N. H., Okamura, A. M. & Bastian, A. J. Active force perception depends on cerebellar function. J. Neurophysiol. 107, 1612–1620 (2012).

    PubMed  Google Scholar 

  49. Therrien, A. S. & Bastian, A. J. Cerebellar damage impairs internal predictions for sensory and motor function. Curr. Opin. Neurobiol. 33, 127–133 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Honda, T. et al. Tandem internal models execute motor learning in the cerebellum. Proc. Natl Acad. Sci. USA 115, 7428–7433 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    CAS  PubMed  Google Scholar 

  52. Lisberger, S. G. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162, 763–776 (2009).

    CAS  PubMed  Google Scholar 

  53. Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110, 361–379 (1987).

    PubMed  Google Scholar 

  54. Pascual-Leone, A., Valls-Sole, J., Brasil-Neto, J. P., Cohen, L. G. & Hallett, M. Akinesia in Parkinson’s disease. I. Shortening of simple reaction time with focal, single-pulse transcranial magnetic stimulation. Neurology 44, 884–891 (1994).

    CAS  PubMed  Google Scholar 

  55. Chen, R., Kumar, S., Garg, R. R. & Lang, A. E. Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin. Neurophysiol. 112, 600–607 (2001).

    CAS  PubMed  Google Scholar 

  56. Jahanshahi, M., Brown, R. G. & Marsden, C. D. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain 115, 539–564 (1992).

    PubMed  Google Scholar 

  57. Birkmayer, W. & Hornykiewicz, O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat. Disord. 4, 59–60 (1998).

    CAS  PubMed  Google Scholar 

  58. Hornykiewicz, O. The discovery of dopamine deficiency in the parkinsonian brain. J. Neural Transm. Suppl. https://doi.org/10.1007/978-3-211-45295-0_3 (2006).

  59. Hornykiewicz, O. Parkinsonism induced by dopaminergic antagonists. Adv. Neurol. 9, 155–164 (1975).

    CAS  PubMed  Google Scholar 

  60. Ehringer, H. & Hornykiewicz, O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin. Wochenschr. 38, 1236–1239 (1960).

    CAS  PubMed  Google Scholar 

  61. Brown, S. H., Kessler, K. R., Hefter, H., Cooke, J. D. & Freund, H. J. Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp. Brain Res. 94, 478–488 (1993).

    CAS  PubMed  Google Scholar 

  62. Brunamonti, E. et al. Cerebellar damage impairs executive control and monitoring of movement generation. PLoS ONE 9, e85997 (2014).

    ADS  PubMed Central  PubMed  Google Scholar 

  63. Holmes, G. The cerebellum of man. Brain 62, 1–30 (1939).

    Google Scholar 

  64. Holmes, G. The symptom of acute cerebellar injuries due to gunshot wounds. Brain 40, 461–535 (1917).

    Google Scholar 

  65. Trouche, E. & Beaubaton, D. Initiation of a goal-directed movement in the monkey. Role of the cerebellar dentate nucleus. Exp. Brain Res. 40, 311–321 (1980).

    CAS  PubMed  Google Scholar 

  66. Meyer-Lohmann, J., Hore, J. & Brooks, V. B. Cerebellar participation in generation of prompt arm movements. J. Neurophysiol. 40, 1038–1050 (1977).

    CAS  PubMed  Google Scholar 

  67. Miller, A. D. & Brooks, V. B. Parallel pathways for movement initiation of monkeys. Exp. Brain Res. 45, 328–332 (1982).

    CAS  PubMed  Google Scholar 

  68. Tsujimoto, T., Gemba, H. & Sasaki, K. Effect of cooling the dentate nucleus of the cerebellum on hand movement of the monkey. Brain Res. 629, 1–9 (1993).

    CAS  PubMed  Google Scholar 

  69. Heiney, S. A., Kim, J., Augustine, G. J. & Medina, J. F. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34, 2321–2330 (2014).

    PubMed Central  PubMed  Google Scholar 

  70. Fortier, P. A., Kalaska, J. F. & Smith, A. M. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J. Neurophysiol. 62, 198–211 (1989).

    CAS  PubMed  Google Scholar 

  71. Harvey, R. J., Porter, R. & Rawson, J. A. Discharges of intracerebellar nuclear cells in monkeys. J. Physiol. 297, 559–580 (1979).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Thach, W. T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J. Neurophysiol. 33, 527–536 (1970).

    CAS  PubMed  Google Scholar 

  73. Ohmae, S., Kunimatsu, J. & Tanaka, M. Cerebellar roles in self-timing for sub- and supra-second intervals. J. Neurosci. 37, 3511–3522 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Thach, W. T. Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res. 88, 233–241 (1975).

    CAS  PubMed  Google Scholar 

  75. Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Heman, P. et al. Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histol. Histopathol. 27, 89–94 (2012).

    CAS  PubMed  Google Scholar 

  77. Necchi, D., Soldani, C., Ronchetti, F., Bernocchi, G. & Scherini, E. MPTP-induced increase in c-Fos- and c-Jun-like immunoreactivity in the monkey cerebellum. Eur. J. Histochem. 48, 385–392 (2004).

    PubMed  Google Scholar 

  78. Rascol, O. et al. The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120, 103–110 (1997).

    PubMed  Google Scholar 

  79. Wu, T. & Hallett, M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128, 2250–2259 (2005).

    PubMed  Google Scholar 

  80. Cerasa, A. et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res. Bull. 71, 259–269 (2006).

    PubMed  Google Scholar 

  81. Cao, H., Xu, X., Zhao, Y., Long, D. & Zhang, M. Altered brain activation and connectivity in early Parkinson disease tactile perception. AJNR Am. J. Neuroradiol. 32, 1969–1974 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Martinu, K. & Monchi, O. Cortico–basal ganglia and cortico–cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav. Neurosci. 127, 222–236 (2013).

    PubMed  Google Scholar 

  83. Tuovinen, N. et al. The reorganization of functional architecture in the early-stages of Parkinson’s disease. Parkinsonism Relat. Disord. 50, 61–68 (2018).

    PubMed  Google Scholar 

  84. Bologna, M. et al. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson’s disease. Parkinsonism Relat. Disord. 21, 1061–1066 (2015).

    PubMed  Google Scholar 

  85. Brusa, L. et al. Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat. Disord. 18, 59–62 (2012).

    PubMed  Google Scholar 

  86. Ferrucci, R. et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson’s disease. Cerebellum 15, 43–47 (2016).

    CAS  PubMed  Google Scholar 

  87. Koch, G. et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73, 113–119 (2009).

    CAS  PubMed  Google Scholar 

  88. Minks, E., Marecek, R., Pavlik, T., Ovesna, P. & Bares, M. Is the cerebellum a potential target for stimulation in Parkinson’s disease? Results of 1-Hz rTMS on upper limb motor tasks. Cerebellum 10, 804–811 (2011).

  89. Teixeira, M. J. et al. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology 85, 2075–2076 (2015).

    PubMed  Google Scholar 

  90. Sokal, P., Rudas, M., Harat, M., Szylberg, L. & Zielinski, P. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin. Neurol. Neurosurg. 135, 62–68 (2015).

    PubMed  Google Scholar 

  91. Prudente, C. N., Hess, E. J. & Jinnah, H. A. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 260, 23–35 (2014).

    CAS  PubMed  Google Scholar 

  92. Ribot, B. et al. Dystonia and dopamine: from phenomenology to pathophysiology. Prog. Neurobiol. 182, 101678 (2019).

    CAS  PubMed  Google Scholar 

  93. Schultz, W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 18, 23–32 (2016).

    PubMed Central  PubMed  Google Scholar 

  94. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Volkow, N. D. et al. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Neuroimage 32, 1782–1792 (2006).

    PubMed  Google Scholar 

  97. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  98. Thoma, P., Bellebaum, C., Koch, B., Schwarz, M. & Daum, I. The cerebellum is involved in reward-based reversal learning. Cerebellum 7, 433–443 (2008).

    PubMed  Google Scholar 

  99. Miquel, M., Gil-Miravet, I. & Guarque-Chabrera, J. The cerebellum on cocaine. Front. Syst. Neurosci. 14, 586574 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).

    PubMed Central  PubMed  Google Scholar 

  101. Miquel, M., Toledo, R., Garcia, L. I., Coria-Avila, G. A. & Manzo, J. Why should we keep the cerebellum in mind when thinking about addiction? Curr. Drug Abuse Rev. 2, 26–40 (2009).

    CAS  PubMed  Google Scholar 

  102. Miquel, M. et al. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 60, 1–11 (2016).

    PubMed  Google Scholar 

  103. Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z. & Borsook, D. The cerebellum and addiction: insights gained from neuroimaging research. Addict. Biol. 19, 317–331 (2014).

    PubMed Central  PubMed  Google Scholar 

  104. Guarque-Chabrera, J., Gil-Miravet, I., Olucha-Bordonau, F., Melchor-Eixea, I. & Miquel, M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 112, 110429 (2022).

    CAS  PubMed  Google Scholar 

  105. Ohmae, S. & Medina, J. F. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Heffley, W. et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 21, 1431–1441 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Heffley, W. & Hull, C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife 8, e46764 (2019).

  108. Kostadinov, D. & Hausser, M. Reward signals in the cerebellum: origins, targets, and functional implications. Neuron 110, 1290–1303 (2022).

    CAS  PubMed  Google Scholar 

  109. Kostadinov, D., Beau, M., Pozo, M. B. & Hausser, M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22, 950–962 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Larry, N., Yarkoni, M., Lixenberg, A. & Joshua, M. Cerebellar climbing fibers encode expected reward size. eLife 8, e46870 (2019).

  111. Shuster, S. A. et al. The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proc. Natl Acad. Sci. USA 118, e2101826118 (2021).

  112. Gao, Z. et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron 89, 645–657 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Bina, L., Romano, V., Hoogland, T. M., Bosman, L. W. J. & De Zeeuw, C. I. Purkinje cells translate subjective salience into readiness to act and choice performance. Cell Rep. 37, 110116 (2021).

    CAS  PubMed  Google Scholar 

  114. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Rothermel, M., Brunert, D., Zabawa, C., Diaz-Quesada, M. & Wachowiak, M. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J. Neurosci. 33, 15195–15206 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. du Hoffmann, J. & Nicola, S. M. Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J. Neurosci. 34, 14349–14364 (2014).

    PubMed Central  PubMed  Google Scholar 

  117. Gao, Z. et al. A cortico–cerebellar loop for motor planning. Nature 563, 113–116 (2018).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  118. Manto, M. & Oulad Ben Taib, N. Cerebellar nuclei: key roles for strategically located structures. Cerebellum 9, 17–21 (2010).

    PubMed  Google Scholar 

  119. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral–genetic dissection of input–output relations. Cell Rep. 26, 159–167 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Elsevier, 2008).

  122. Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  123. Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 1183, 221–242 (2014).

    PubMed Central  PubMed  Google Scholar 

  124. Berretta, N., Bernardi, G. & Mercuri, N. B. Firing properties and functional connectivity of substantia nigra pars compacta neurones recorded with a multi-electrode array in vitro. J. Physiol. 588, 1719–1735 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The work was funded, in part, by R01MH115604 and R01DA044761 (K.K.). F.N. was supported in part by R01MH060605. We thank the members of the Khodakhah laboratory and S. Nicola for helpful discussions and feedback. dLight used for dopamine measurements was a kind gift from L. Tian. Rabies and helper viruses for retrograde tracing were kind gifts from A. Hantman and K. Ritola. The Zeiss LSM 880 Airyscan confocal microscope of the Neural Cell Engineering and Imaging Core was purchased by funds provided by the NIH Shared Instrument Grant S10OD025295.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and R.B. performed in vivo electrophysiology experiments and post hoc histology. S.W. performed in vitro electrophysiological recordings and post hoc histology. M.O. performed anatomical tracing experiments. Image analyses were performed by M.O. and L.K. J.V. performed dopamine measurements and fiber photometry experiments in head-restrained animals on the wheel, with post hoc histology performed by M.O. and J.V. The Pavlovian task and its fiber photometry were performed by J.Y., and post hoc histology was performed by L.K. F.N. supervised and contributed to the analysis of behavioral experiments. K.K. supervised all aspects of the research and secured funding.

Corresponding author

Correspondence to Kamran Khodakhah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Bernardo Sabatini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Post-hoc histology of in vivo electrophysiology experiments, related to Fig. 1.

(A) AAV-ChR2-EYPF was injected into the DCN and an optrode was placed in the SNc for in vivo recording. (B) (Top, left) Schematic of SNc region zoom in. (Top, right) Expression of ChR2 in cerebellar fibers in SNc was visualized with YFP (green). TH staining was performed to delimit the structure and to label for dopaminergic neurons (blue). Scale bar: 250 µm. (Bottom) Different examples showing cerebellar axons in SNc. Scale bars: 100 µm. (C) (Top) Example of the lesion in the tissue caused by the optrode in the SNc. (Bottom) To track the position of the optrode, it was labeled with DiI (red). Scale bars: 250 µm.

Extended Data Fig. 2 Increasing the strength of optogenetic activation of Cb-SNc axons in vivo increases the response of SNc neurons, related to Fig. 1.

(A) The response of SNc neurons increased with increasing laser intensities. Example response of a neuron to increasing intensities of light stimulation. (B) Summary of cells recorded from SNc under stimulation with various light intensities.

Extended Data Fig. 3 Post-hoc histology of dopamine measurements experiments, related to Fig. 1.

(A) AAV-ChR2-EYFP was injected in the DCN and AAV-dlight1.1 in the striatum. Optic fibers were implanted in the SNc to stimulate Cb-SNc axons and in the striatum to measure dopamine fluctuations. (B) (Left) Schematic of SNc region zoom in. (Right) Optic fiber location in SNc. Scale bar: 250 µm. (C) (Left) Schematic of striatum region zoom in. (Right) Optic fiber location in striatum. Scale bar: 1 mm.

Extended Data Fig. 4 Raw data and onset latency of striatal dopamine evoked by Cb-SNc activation, related to Fig. 1j,k.

(A) Mice were injected with ChR2 in the DCN, and the dopamine sensor dLight1.1 in the striatum. Optic fibers were implanted in SNc to deliver optogenetic pulses and in the dorsolateral striatum to monitor dopamine fluctuations. (B) Raw data traces of dopamine dLight1.1 signals recorded in the dorsolateral striatum. Both spontaneous and optogenetically-evoked (single 1 ms pulses, top or 20 Hz trains, bottom) events are present. (C) (Left) Dopamine signal Z-score aligned to the time of optogenetic stimulation (1 ms pulse at 1 mW, mean ± SEM, n = 7 fibers, N = 4 mice). (Right) Expansion of the first data point after optogenetic stimulation (dotted box). Open circles are the mean Z-score of all the trials (128) in each mouse. One-sided paired t-test of the mean data points obtained just before and just after optogenetic stimulation.

Extended Data Fig. 5 Anatomical evidence for monosynaptic projections from the DCN to the SNc, related to Fig. 3.

(A) Experimental design. RCE:loxp mice were injected bilaterally with AAV1.Cre to label DCN-recipient cells in the SNc. (B) Representative image of AAV1-Cre transfected neurons in the three DCN. DN: dentate nucleus, IntN: interposed nucleus, FN: fastigial nucleus, VN: vestibular nucleus. Scale bar: 250 µm. (C) Average heatmap of the DCN AAV1-Cre transfection efficacy (N = 3). Scale bar: 250 µm. (D) Representative image of the SNc. TH positive neurons are labeled in red, SNc neurons receiving inputs from the DCN are labeled with GFP in green, nuclei are labeled with DAPI in blue. Both TH-positive (arrow) and TH-negative (arrowhead) SNc neurons were targeted by the DCN. Scale bars: 50 and 25 µm. (E) Locations of all DCN-targeted neurons along the SNc. N = 3 mice. Scale bar: 200 µm. (F) Number of DCN-targeted neurons in the SNc along the antero-posterior axis. Neuronal counts from both hemispheres in each section of the SNc were combined. Mean ± SEM, N = 3.

Extended Data Fig. 6 Post-hoc histology of dopamine measurements in DLS, related to Fig. 5.

(A) AAV-ChR2-EYFP was injected in the DCN and AAV-dlight1.1 in the striatum. Optic fibers were implanted in the SNc to stimulate Cb-SNc axons and in the striatum to measure dopamine fluctuations. (B) (Left) Schematic of SNc region zoom in. (Right) Optic fiber location in SNc.ChR2 is shown in green (YFP), TH in red and nuclei is blue (DAPI). Scale bar: 200 µm. (C) (Left) Schematic of striatum region zoom in. (Right) Optic fiber location in dorsolateral striatum. Scale bar: 200 µm.

Extended Data Fig. 7 Post-hoc histology of simultaneous fiber photometry recordings of Cb-SNc axons and SNc neurons in mice on the wheel, related to Fig. 6a–c.

(A) AAV-GCaMP7 was injected in the DCN and AAV-jRGECO1 was injected in the SNc. Optic fiber was implanted in the SNc for dual recordings. (B) Schematic of SNc region. (C) (Left) Expression of jRGECO and fiber location in SNc. Scale bar: 1 mm. (Right) A zoom in of the image shows jRGECO neurons in red. TH was used to delimit SNc area (blue). Optic fiber was located above the SNc. Scale bar: 250 µm.

Extended Data Fig. 8 Post-hoc histology of single fiber photometry recordings in mice performing the lever-manipulation and Pavlovian tasks, related to Fig. 7d,e and 7a–c.

(A) AAV-GCaMP7 was injected in the DCN. Optic fibers were implanted in the SNc to measure the Cb-SNc activity. (B) (Left) Schematic of SNc region. (Right) Optic fiber location in SNc. Scale bar: 1 mm.

Extended Data Fig. 9 Reward-related activity of cerebellar axons in the SNc is bilateral, related to Fig. 7a,b.

(A) Schematic of bilateral recording of Cb-SNc axons during regular reward consumption. (B) GCaMP signals from Cb-SNc axons recorded simultaneously from the right (top) and the left (bottom) SNc during regular reward trials. Mean ± SEM.

Extended Data Fig. 10 Post-hoc histology of dual fiber photometry recordings in mice performing a Pavlovian task, related to Fig. 7c–f.

(A) AAV-GCaMP7 was injected in the DCN and AAV-FLEX-jRGECO1 in the SNc of DAT-Cre mice. An optic fiber was implanted in the SNc to measure Cb-SNc axons and SNc-DA neurons activity while an optic fiber in the dorsolateral striatum (DLS) recorded SNc-DA neurons axons. (B) Schematic of SNc region (zoom in). Expression of jRGECO and fiber location in SNc. jRGECO neurons (in red) colocalized with TH (blue) and Cb-SNc fibers expressing GCaMP (green). Optic fiber was located above the SNc. Scale bar: 250 µm. (C) Schematic of striatum (zoom in). Optic fiber location in DLS. Scale bar: 1 mm.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Washburn, S., Oñate, M., Yoshida, J. et al. The cerebellum directly modulates the substantia nigra dopaminergic activity. Nat Neurosci 27, 497–513 (2024). https://doi.org/10.1038/s41593-023-01560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01560-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing