Skip to main content
Log in

Synthesis, X-ray crystal structure and photophysics of butterfly shape orange and red emanating polynuclear complexes of tris(dibenzoylmethanato)Ln(III) (Ln = Sm/Eu) and exo-bidentate 4,4′-bipyridine

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reaction of two equivalents of [Ln(dbm)3(H2O)] (Ln = Sm/Eu/Gd) with one equivalent of 4,4′-bipyridine (4,4′-bpy) led to the formation of rare polynuclear complexes of the type [Ln(dbm)3(4,4′-bpy)]n (dbm is the anion of 1,3-diphenyl-1,3-propanedione) instead of symmetrically bridged dinuclear complexes. The structure of the complexes has been established by the single crystal X-ray diffraction (SC-XRD) method and shows that the coordination sphere is composed of a LnO6N2 core (octacoordinated). Shape analysis further revealed that the geometry around Ln(III) is distorted square anti-prismatic with SHAPE value 0.738 and 25.719 for [Sm(dbm)3(4,4′-bpy)]n and [Eu(dbm)3(4,4′-bpy)]n, respectively. Photoluminescence (PL) properties of [Sm(dbm)3(4,4′-bpy)]n and [Eu(dbm)3(4,4′-bpy)]n are discussed in the solid-state and PMMA hybrid film (w/w 6%). By employing theoretical modelling in conjunction with the experimental PL data and crystal structure and an energy transfer (ET) mechanism for the sensitized PL of [Eu(dbm)3(4,4′-bpy)]n is proposed and discussed in detail. Finally, the role of each ligand in sensitized PL of [Eu(dbm)3(4,4′-bpy)]n is calculated and discussed by the chemical partitions of the radiative decay.


Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. They are available from the corresponding author upon reasonable request.

References

  1. Eliseeva, S. V., & Bünzli, J.-C.G. (2011). Rare earths: Jewels for functional materials of the future New. Journal of Chemistry, 35, 1165–1176. https://doi.org/10.1039/C0NJ00969E

    Article  CAS  Google Scholar 

  2. Ilmi, R., Wang, J., Dutra, J. D. L., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2023). Efficient red organic light emitting diodes of nona coordinate europium tris(β-diketonato) complexes bearing 4’-phenyl-2,2’:6’,2’’-terpyridine. Chemistry: A European Journal. https://doi.org/10.1002/chem.202300376

    Article  PubMed  Google Scholar 

  3. Ilmi, R., Khan, M. S., Sun, W., Zhou, L., Wong, W.-Y., & Raithby, P. R. (2019). A single component white electroluminescent device fabricated from a metallo-organic terbium complex. Journal of Materials Chemistry C, 7, 13966–13975. https://doi.org/10.1039/C9TC04653D

    Article  CAS  Google Scholar 

  4. Ilmi, R., Li, X., Al Rasbi, N. K., Zhou, L., Wong, W.-Y.R., Raithby, P. R., & Khan, M. S. (2023). Two new red emitting ternary europium(III) complexes with high photoluminescence quantum yields and exceptional performance in OLED devices. Dalton Transactions. https://doi.org/10.1039/D3DT02147E

    Article  PubMed  Google Scholar 

  5. Zhao, M., Sik, A., Zhang, H., & Zhang, F. (2023). Tailored NIR-II lanthanide luminescent nanocrystals for improved biomedical application. Advance Optical Materials, 11, 2202039. https://doi.org/10.1002/adom.202202039

    Article  CAS  Google Scholar 

  6. Zanella, S., Hernández-Rodríguez, M. A., Ferreira, R. A. S., & Brites, C. D. S. (2023). Lanthanide-based logic: A venture for the future of molecular computing. Chemical Communications, 59, 7863–7874. https://doi.org/10.1039/D3CC01827J

    Article  CAS  PubMed  Google Scholar 

  7. Hasan, N., Anjum, S., Khan, M. S., & Ilmi, R. (2023). In: M. S. Hasnain, A. K. Nayak, & T. M. Aminabhavi (Eds.), Inorganic nanosystems (pp. 351–387). Academic Press.

  8. Ilmi, R., & Iftikhar, K. (2016). Structure elucidation by sparkle/RM1, effect of lanthanide contraction and photophysical properties of lanthanide(III) trifluoroacetylacetonate complexes with 1,10-phenanthroline. Journal of Photochemistry and Photobiology A: Chemistry, 325, 68–82. https://doi.org/10.1016/j.jphotochem.2016.03.018

    Article  CAS  Google Scholar 

  9. Weissman, S. I. (1942). Intramolecular energy transfer the fluorescence of complexes of europium. The Journal of Chemical Physics, 10, 214–217. https://doi.org/10.1063/1.1723709

    Article  CAS  ADS  Google Scholar 

  10. Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., & Tondello, E. (2010). Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials Coord. Chemical Reviews, 254, 487–505. https://doi.org/10.1016/j.ccr.2009.07.025

    Article  CAS  Google Scholar 

  11. Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 295, 1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  12. Huang, Y.-J., Ke, C., Fu, L.-M., Li, Y., Wang, S.-F., Ma, Y.-C., Zhang, J.-P., & Wang, Y. (2019). Excitation energy-transfer processes in the sensitization luminescence of europium in a highly luminescent complex. ChemistryOpen, 8, 388–392. https://doi.org/10.1002/open.201900012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Sá, G. F., Malta, O. L., de Mello, D. C., Simas, A. M., Longo, R. L., Santa-Cruz, P. A., & da Silva, E. F. (2000). Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemical Reviews, 196, 165–195. https://doi.org/10.1016/s0010-8545(99)00054-5

    Article  Google Scholar 

  14. Binnemans, K. (2005). In: K. A. Gschneidner, J. C. Bunzli, V. K. Pecharsky (Eds.), Handbook on the physics and chemistry of rare earths (pp. 107–272). Elsevier.

  15. Døssing, A. (2005). Luminescence from Lanthanide(3+) ions in solution. European Journal of Inorganic Chemistry, 2005, 1425–1434. https://doi.org/10.1002/ejic.200401043

    Article  CAS  Google Scholar 

  16. Ilmi, R., Juma Al-busaidi, I., Haque, A., & Khan, M. S. (2018). Recent progress in coordination chemistry, photo-physical properties, and applications of pyridine-based Cu(I) complexes. Journal of Coordination Chemistry, 71, 3045–3076. https://doi.org/10.1080/00958972.2018.1509070

    Article  CAS  Google Scholar 

  17. Roesky, H. W., & Andruh, M. (2003). The interplay of coordinative, hydrogen bonding and π–π stacking interactions in sustaining supramolecular solid-state architectures.: A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coordination Chemical Reviews, 236, 91–119. https://doi.org/10.1016/S0010-8545(02)00218-7

    Article  CAS  Google Scholar 

  18. Lima, P. P., Sá Ferreira, R. A., Freire, R. O., Almeida Paz, F. A., Fu, L., Alves, S., Jr., Carlos, L. D., & Malta, O. L. (2006). Spectroscopic study of a UV-photostable organic-inorganic hybrids incorporating an Eu3+ β-diketonate complex. ChemPhysChem, 7, 735–746. https://doi.org/10.1002/cphc.200500588

    Article  CAS  PubMed  Google Scholar 

  19. Lima, P. P., Paz, F. A. A., Brites, C. D. S., Quirino, W. G., Legnani, C., Costa e silva, M., Ferreira, R. A. S., Junior, S. A., Malta, O. L., Cremona, M., & Carlos, L. D. (2014). White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Organic Electronics, 15, 798–808. https://doi.org/10.1016/j.orgel.2014.01.009

    Article  CAS  Google Scholar 

  20. Seward, C., Hu, N.-X., & Wang, S. (2001). 1-D Chain and 3-D grid green luminescent terbium(III) coordination polymers: {Tb(O2CPh)3(CH3OH)2(H2O)}n and {Tb2(O2CPh)6(4,4′-bipy)}n. Journal of the Chemical Society, Dalton Transactions. https://doi.org/10.1039/B007866M

    Article  Google Scholar 

  21. Kruszynski, R., Czylkowska, A., & Czakis-Sulikowska, D. (2006). A novel carboxylic coordination polymer of samarium(III): [Sm(H2O)(4,4′-bipyridine)(CCl2HCOO)3]n. Journal of Coordination Chemistry, 59, 681–690. https://doi.org/10.1080/00958970500345356

    Article  CAS  Google Scholar 

  22. de Lill, D. T., de Bettencourt-Dias, A., & Cahill, C. L. (2007). Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorganic Chemistry, 46, 3960–3965. https://doi.org/10.1021/ic062019u

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J., Fan, J., Guo, L., Yin, X., Wang, Z., & Zhang, W. (2010). Synthesis, crystal structures and photoluminescent properties of lanthanide supramolecular complexes with 4-oxo-1(4H)-quinolineacetate. Journal of Solid State Chemistry, 183, 575–583. https://doi.org/10.1016/j.jssc.2009.12.027

    Article  CAS  ADS  Google Scholar 

  24. Ilmi, R., & Iftikhar, K. (2015). Optical emission studies of new europium and terbium dinuclear complexes with trifluoroacetylacetone and bridging bipyrimidine. Fast radiation and high emission quantum yield. Polyhedron, 102, 16–26. https://doi.org/10.1016/j.poly.2015.07.046

    Article  CAS  Google Scholar 

  25. Hasan, N., & Iftikhar, K. (2019). Syntheses, crystal structure and photophysical properties of [Sm(dbm)3(impy)] and [Tb(dbm)3(impy)] and their hybrid films. New Journal of Chemistry, 43, 4391–4405. https://doi.org/10.1039/C8NJ05045G

    Article  CAS  Google Scholar 

  26. Hasan, N., & Iftikhar, K. (2019). Synthesis, crystal structure and photoluminescence studies of [Eu(dbm)3(impy)] and its polymer-based hybrid film. New Journal of Chemistry, 43, 2479–2489. https://doi.org/10.1039/C8NJ04560G

    Article  CAS  Google Scholar 

  27. Bruker. (2012). APEX3, Bruker AXS Inc.

  28. Sheldrick, G. (2010). SADABS (p. 1996). University of Göttingen.

    Google Scholar 

  29. Altomare, A., Cascarano, G., Giacovazzo, C., & Guagliardi, A. (1993). Completion and refinement of crystal structures with SIR92. Journal of Applied Crystallography, 26, 343–350. https://doi.org/10.1107/S0021889892010331

    Article  ADS  Google Scholar 

  30. Sheldrick, G. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71, 3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  ADS  Google Scholar 

  31. Farrugia, L. (1999). WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837–838. https://doi.org/10.1107/S0021889899006020

    Article  CAS  ADS  Google Scholar 

  32. Farrugia, L. (1997). ORTEP-3 for Windows—A version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  ADS  Google Scholar 

  33. Ilmi, R., Khan, M. S., Li, Z., Zhou, L., Wong, W.-Y., Marken, F., & Raithby, P. R. (2019). Utilization of ternary europium complex for organic electroluminescent devices and as a sensitizer to improve electroluminescence of red-emitting iridium complex. Inorganic Chemistry, 58, 8316–8331. https://doi.org/10.1021/acs.inorgchem.9b00303

    Article  CAS  PubMed  Google Scholar 

  34. dos Santos, E. R., Freire, R. O., da Costa Jr., N. B., Paz, F. A. A., de Simone, C. A., Júnior, S. A., Araújo, A. A. S., Nunes, L. A. O., de Mesquita, M. E., & Rodrigues, M. O. (2010). Theoretical and experimental spectroscopic approach of fluorinated Ln3+−β-diketonate complexes. The Journal of Physical Chemistry A, 114, 7928–7936. https://doi.org/10.1021/jp104038r

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Judd, B. R. (1962). Optical absorption intensities of rare-earth ions. Physical Review, 127, 750–761. https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  ADS  Google Scholar 

  36. Ofelt, G. S. (1962). Intensities of crystal spectra of rare-earth ions. The Journal of Chemical Physics, 37, 511–520. https://doi.org/10.1063/1.1701366

    Article  CAS  ADS  Google Scholar 

  37. Malta, O. L. (1997). Ligand—Rare-earth ion energy transfer in coordination compounds. A theoretical approach. Journal of Luminescence, 71, 229–236. https://doi.org/10.1016/S0022-2313(96)00126-3

    Article  CAS  ADS  Google Scholar 

  38. Malta, O. L. (2008). Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. Journal of Non-Crystalline Solids, 354, 4770–4776. https://doi.org/10.1016/j.jnoncrysol.2008.04.023

    Article  CAS  ADS  Google Scholar 

  39. Malta, O. L., & Gonçalves e Silva, F. R. (1998). A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions. Spectrochimica Acta Part A, 54, 1593–1599. https://doi.org/10.1016/S1386-1425(98)00086-9

    Article  ADS  Google Scholar 

  40. Dutra, J. D., Bispo, T. D., & Freire, R. O. (2014). LUMPAC lanthanide luminescence software: efficient and user friendly. Journal of Computational Chemistry, 35, 772–775. https://doi.org/10.1002/jcc.23542

    Article  CAS  PubMed  Google Scholar 

  41. Ilmi, R., Sun, W., Dutra, J. D. L., Al-Rasbi, N. K., Zhou, L., Qian, P.-C., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2020). Monochromatic red electroluminescence from a homodinuclear europium(iii) complex of a β-diketone tethered by 2,2′-bipyrimidine. Journal of Materials Chemistry C, 8, 9816–9827. https://doi.org/10.1039/D0TC02181D

    Article  CAS  Google Scholar 

  42. Pinsky, M., & Avnir, D. (1998). Continuous symmetry measures. 5 The classical polyhedra. Inorganic Chemistry, 37, 5575–5582. https://doi.org/10.1021/ic9804925

    Article  CAS  PubMed  Google Scholar 

  43. Casanova, D., Llunell, M., Alemany, P., & Alvarez, S. (2005). The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. Chemistry: A European Journal, 11, 1479–1494. https://doi.org/10.1002/chem.200400799

    Article  CAS  PubMed  Google Scholar 

  44. Ilmi, R., Zhang, D., Dutra, J. D. L., Dege, N., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2021). A tris β-diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Organic Electronics, 96, 106216. https://doi.org/10.1016/j.orgel.2021.106216

    Article  CAS  Google Scholar 

  45. Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R., & Khan, M. S. (2020). Towards white light emission from a hybrid thin film of a self-assembled ternary samarium(iii) complex. New Journal of Chemistry, 44, 5673–5683. https://doi.org/10.1039/C9NJ06287D

    Article  CAS  Google Scholar 

  46. Regulacio, M. D., Pablico, M. H., Vasquez, J. A., Myers, P. N., Gentry, S., Prushan, M., Tam-Chang, S.-W., & Stoll, S. L. (2008). Luminescence of Ln(III) dithiocarbamate complexes (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy). Inorganic Chemistry, 47, 1512–1523. https://doi.org/10.1021/ic701974q

    Article  CAS  PubMed  Google Scholar 

  47. Zheng, Y., Fu, L., Zhou, Y., Yu, J., Yu, Y., Wang, S., & Zhang, H. (2002). Electroluminescence based on a β-diketonate ternary samarium complex. Journal of Materials Chemistry, 12, 919–923. https://doi.org/10.1039/B110373C

    Article  CAS  Google Scholar 

  48. Miyazaki, S., Goushi, K., Kitagawa, Y., Hasegawa, Y., Adachi, C., Miyata, K., & Onda, K. (2023). Highly efficient light harvesting of a Eu(iii) complex in a host–guest film by triplet sensitization. Chemical Science, 14, 6867–6875. https://doi.org/10.1039/D3SC01817B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ilmi, R., Zhang, D., Tensi, L., Al-Sharji, H., Al Rasbi, N. K., Macchioni, A., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2022). Salts of Lanthanide(III) Hexafluoroacetylacetonates [Ln = Sm(III), Eu(III) and Tb(III)] with Dipyridylammonium cations: Synthesis, characterization, photophysical properties and OLED fabrication. Dyes and Pigments, 203, 110300. https://doi.org/10.1016/j.dyepig.2022.110300

    Article  CAS  Google Scholar 

  50. Ilmi, R., Kansız, S., Dege, N., & Khan, M. S. (2019). Synthesis, structure, Hirshfeld surface analysis and photophysical studies of red emitting europium acetylacetonate complex incorporating a phenanthroline derivative. Journal of Photochemistry and Photobiology A: Chemistry, 377, 268–281. https://doi.org/10.1016/j.jphotochem.2019.03.036

    Article  CAS  Google Scholar 

  51. Ilmi, R., Kansız, S., Al Rasbi, N. K., Husband, J., Dege, N., & Khan, M. S. (2023). Synthesis, X-ray crystal structure and determination of non-covalent interactions through Hirshfeld surface analysis of a pure red emitting asymmetrical octacoordinated Sm(III) complex. Polyhedron, 246, 116673. https://doi.org/10.1016/j.poly.2023.116673

    Article  CAS  Google Scholar 

  52. Hasan, N., & Iftikhar, K. (2020). Luminescence from a highly asymmetric nine-coordinate tricapped trigonal prismatic Sm(III) complex. Journal of Luminescence, 223, 117135. https://doi.org/10.1016/j.jlumin.2020.117135

    Article  CAS  ADS  Google Scholar 

  53. Li, Z., Yu, J., Zhou, L., Zhang, H., & Deng, R. (2008). The optical properties and the natural lifetime calculation of a Sm(III) complex Inorg. Chemical Communications, 11, 1284–1287. https://doi.org/10.1016/j.inoche.2008.08.008

    Article  CAS  Google Scholar 

  54. Ilmi, R., Anjum, S., Haque, A., & Khan, M. S. (2019). A new brilliant red emitting Eu(III) ternary complex and its transparent flexible and photostable poly(urethane) hybrid thin film for optoelectronic applications. Journal of Photochemistry and Photobiology A: Chemistry, 383, 111968. https://doi.org/10.1016/j.jphotochem.2019.111968

    Article  CAS  Google Scholar 

  55. Ilmi, R., Yin, J., Dutra, J. D. L., Al Rasbi, N. K., Oliveira, W. F., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2022). Single component white-OLEDs derived from tris(β-diketonato) europium(iii) complexes bearing the large bite angle N^N 2-(4-thiazolyl)benzimidazole ligand. Dalton Transactions, 51, 14228–14242. https://doi.org/10.1039/D2DT01873J

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z., & Huang, C. (2019). Review on the electroluminescence study of lanthanide complexes. Advanced Optical Materials. https://doi.org/10.1002/adom.201801256

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ilmi, R., Hasan, N., Liu, J., Mara, D., Van Deun, R., & Iftikhar, K. (2017). Effect of 2,4,6-tri(2-pyridyl)-1,3,5-triazine on visible and NIR luminescence of lanthanide tris(trifluoroacetylacetonates). Journal of Photochemistry and Photobiology A: Chemistry, 347, 116–129. https://doi.org/10.1016/j.jphotochem.2017.06.031

    Article  CAS  Google Scholar 

  58. Rao, X., Song, T., Gao, J., Cui, Y., Yang, Y., Wu, C., Chen, B., & Qian, G. (2013). A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. Journal of the American Chemical Society, 135, 15559–15564. https://doi.org/10.1021/ja407219k

    Article  CAS  PubMed  Google Scholar 

  59. De Andrade, A. V. M., Da Costa Jr, N. B., Longo, R. L., Malta, O. L., Simas, A. M., & De Sá, G. F. (1997). Modeling lanthanide complexes: towards the theoretical design of light conversion molecular devices. Molecular Engineering, 7, 293–308. https://doi.org/10.1023/A:1008227001656

    Article  Google Scholar 

  60. Lima, N. B. D., Dutra, J. D. L., Gonçalves, S. M. C., Freire, R. O., & Simas, A. M. (2016). Chemical partition of the radiative decay rate of luminescence of europium complexes. Science Reports, 6, 21204. https://doi.org/10.1038/srep21204

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

N. H. thanks UGC (Govt. of India) for the award of the Basic Scientific Research fellowship. The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IIT Madras for Single Crystal X-ray analyses and Dr Neetu Singh of Advanced Instrumentation Research Facility (AIRF), JNU for Time-Resolved Fluorescence. The Central Instrument Facility (CIF) of Jamia Millia Islamia is gratefully acknowledged for extending FT-IR and Steady-state Luminescence and powder X-ray diffraction facility. RI acknowledges His Majesty's Trust Fund for Strategic Research (Grant No. SQU/SR/SCI/CHEM/21/01) and The Ministry of Higher Education, Research and Innovation (MoHERI), Oman (Grant: RC-RG/SCI/CHEM/22/01) for funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Najmul Hasan or Rashid Ilmi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, N., Ilmi, R. & Iftikhar, K. Synthesis, X-ray crystal structure and photophysics of butterfly shape orange and red emanating polynuclear complexes of tris(dibenzoylmethanato)Ln(III) (Ln = Sm/Eu) and exo-bidentate 4,4′-bipyridine. Photochem Photobiol Sci 23, 315–327 (2024). https://doi.org/10.1007/s43630-023-00519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00519-w

Keywords

Navigation