Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCG immunization induces CX3CR1hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity

An Author Correction to this article was published on 01 February 2024

This article has been updated

Abstract

After a century of using the Bacillus Calmette–Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αβ T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BCG vaccination provides cross-protection against IAV infection.
Fig. 2: BCG-IV induces the enrichment of CX3CR1hi T cell population.
Fig. 3: Characterization of CX3CR1hi T cells.
Fig. 4: CD4+ CX3CR1hi T cells are required for the cross-protection against IAV infection.
Fig. 5: CD4+CX3CR1hi T cells are potent producers of IFN-γ.
Fig. 6: IFN-γ stimulates anti-IAV immunity in AMs.

Similar content being viewed by others

Data availability

Bulk RNA-seq data have been deposited in the Gene Expression Omnibus and are publicly available under accession number GSE246201. Data can be interactively viewed on a webserver available at http://dinglab.rimuhc.ca:8080/mcgill/Maz/kimtran/webserver/dataExpr/. Source data are provided with this paper.

Change history

References

  1. Calmette A. G. C., Boquet A. & Négre L. La vaccination préventive contre la tuberculose par le ‘BCG’. Am. J. Public Health Nations Health 18, 1075 (1928).

  2. Mangtani, P. et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin. Infect. Dis. 58, 470–480 (2014).

    Article  PubMed  Google Scholar 

  3. Benn, C. S., Netea, M. G., Selin, L. K. & Aaby, P. A small jab - a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 34, 431–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Garly, M. L. et al. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine 21, 2782–2790 (2003).

    Article  ADS  PubMed  Google Scholar 

  5. Prentice, S. et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial. Lancet Infect. Dis. 21, 993–1003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kleinnijenhuis, J. et al. Bacille Calmette–Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. van ‘t Wout, J. W., Poell, R. & van Furth, R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand. J. Immunol. 36, 713–719 (1992).

    Article  PubMed  Google Scholar 

  9. Tribouley, J., Tribouley-Duret, J. & Appriou, M. Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni. C. R. Seances Soc. Biol. Fil. 172, 902–904 (1978).

    CAS  PubMed  Google Scholar 

  10. Hippmann, G., Wekkeli, M., Rosenkranz, A. R., Jarisch, R. & Götz, M.Nonspecific immune stimulation with BCG in Herpes simplex recidivans. Follow-up 5 to 10 years after BCG vaccination.Wien. Klin. Wochenschr. 104, 200–204 (1992).

    CAS  PubMed  Google Scholar 

  11. Giamarellos-Bourboulis, E. J. et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 183, 315–323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stensballe, L. G. et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case–control study. Vaccine 23, 1251–1257 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wardhana, Datau, E. A., Sultana, A., Mandang, V. V. & Jim, E. The efficacy of Bacillus Calmette–Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones. 43, 185–190 (2011).

    CAS  PubMed  Google Scholar 

  14. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Khan, N. et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752–770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barclay, W. R., Anacker, R. L., Brehmer, W., Leif, W. & Ribi, E. Aerosol-induced tuberculosis in subhuman primates and the course of the disease after intravenous BCG vaccination. Infect. Immun. 2, 574–582 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darrah, P. A. et al. Airway T cells are a correlate of i.v. Bacille Calmette–Guerin-mediated protection against tuberculosis in rhesus macaques. Cell Host Microbe 31, 962–977 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Selin, L. K., Nahill, S. R. & Welsh, R. M. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933–1943 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hesslein, D. G. & Schatz, D. G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wedemeyer, H., Mizukoshi, E., Davis, A. R., Bennink, J. R. & Rehermann, B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol. 75, 11392–11400 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pihlgren, M., Dubois, P. M., Tomkowiak, M., Sjögren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kim, J. et al. Innate-like cytotoxic function of bystander-activated CD8+ T cells is associated with liver injury in acute hepatitis A. Immunity 48, 161–173 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Berg, R. E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lertmemongkolchai, G., Cai, G., Hunter, C. A. & Bancroft, G. J. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J. Immunol. 166, 1097–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Olson, J. A., McDonald-Hyman, C., Jameson, S. C. & Hamilton, S. E. Effector-like CD8+ T cells in the memory population mediate potent protective immunity. Immunity 38, 1250–1260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mudd, J. C. et al. Inflammatory function of CX3CR1+ CD8+ T cells in treated HIV infection is modulated by platelet interactions. J. Infect. Dis. 214, 1808–1816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishimura, M. et al. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol. 168, 6173–6180 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Böttcher, J. P. et al. Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat. Commun. 6, 8306 (2015).

    Article  ADS  PubMed  Google Scholar 

  33. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Batista, N. V. et al. T cell-intrinsic CX3CR1 marks the most differentiated effector CD4+ T cells, but is largely dispensable for CD4+ T cell responses during chronic viral infection. Immunohorizons 4, 701–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Weiskopf, D. et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl Acad. Sci. USA 112, E4256–4263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, J. et al. Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Sci. Immunol. 7, eadd4853 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Kaufmann, E. et al. BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Rep. 38, 110502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Divangahi, M., King, I. L. & Pernet, E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol. 36, 307–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Downey, J. et al. RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to influenza A virus infection. PLoS Pathog. 13, e1006326 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anacker, R. L. et al. Superiority of intravenously administered BCG and BCG cell walls in protecting rhesus monkeys (Macaca mulatta) against airborne tuberculosis. Z. Immunitatsforsch. Exp. Klin. Immunol. 143, 363–376 (1972).

    CAS  PubMed  Google Scholar 

  41. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matza, D. et al. A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28, 64–74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, F. et al. The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory TH1 cell fate determination. J. Exp. Med. 215, 1813–1821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dutta, A. et al. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs. Sci. Rep. 6, 32973 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Landsman, L. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113, 963–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Hughes, P. M., Botham, M. S., Frentzel, S., Mir, A. & Perry, V. H. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37, 314–327 (2002).

    Article  PubMed  Google Scholar 

  47. McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, H., Jeong, S. & Shin, E. C. Significance of bystander T cell activation in microbial infection. Nat. Immunol. 23, 13–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Lusty, E. et al. IL-18/IL-15/IL-12 synergy induces elevated and prolonged IFN-γ production by ex vivo expanded NK cells which is not due to enhanced STAT4 activation. Mol. Immunol. 88, 138–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Kamijo, R. et al. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette–Guérin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178, 1435–1440 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schneider, C. et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 10, e1004053 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Pernet, E. et al. Neonatal imprinting of alveolar macrophages via neutrophil-derived 12-HETE. Nature 614, 530–538 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires t cell help and is critical to trained immunity. Cell 175, 1634–1650 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Kristensen, I., Aaby, P. & Jensen, H. Routine vaccinations and child survival: follow up study in Guinea-Bissau, West Africa. BMJ 321, 1435–1438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aaby, P. et al. Non-specific effects of standard measles vaccine at 4.5 and 9 months of age on childhood mortality: randomised controlled trial. BMJ 341, c6495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arstila, T. P. et al. A direct estimate of the human alphabeta T cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Uthayakumar, D. et al. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations. Front. Immunol. 9, 2869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jameson, J., Cruz, J. & Ennis, F. A. Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J. Virol. 72, 8682–8689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tabi, Z., Lynch, F., Ceredig, R., Allan, J. E. & Doherty, P. C. Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium ionophore. Cell Immunol. 113, 268–277 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Krueger, P. D. et al. Two sequential activation modules control the differentiation of protective T helper-1 (TH1) cells. Immunity 54, 687–701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Klenerman, P. & Oxenius, A. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 16, 367–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fong, C. H. et al. Interferon-gamma inhibits influenza A virus cellular attachment by reducing sialic acid cluster size. iScience 25, 104037 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gocher-Demske, A. M. et al. IFNγ-induction of TH1-like regulatory T cells controls antiviral responses. Nat. Immunol. 24, 841–854 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Peters, J. M. et al. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. Preprint at bioRxiv https://doi.org/10.1101/2023.07.16.549208 (2023).

  74. Jaworska, J. et al. NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc. Natl Acad. Sci. USA 111, 2110–2119 (2014).

    Article  Google Scholar 

  75. Ghoneim, H. E., Thomas, P. G. & McCullers, J. A. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J. Immunol. 191, 1250–1259 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat. Immunol. 2, 797–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Netea, M. G. et al. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe https://doi.org/10.1016/j.chom.2018.12.006 (2019).

Download references

Acknowledgements

We acknowledge technical help from staff at the RI-MUHC immunophenotyping platform. We thank M. J. Richer for his invaluable insight throughout this study. This work was supported by Canadian Institute of Health Research (CIHR) Project grants (168884 and 168885, to M.D.). M.D. holds a Fonds de Recherche du Québec–Santé Award and the Strauss Chair in Respiratory Diseases and is a fellow member of the Royal Society of Canada. K.A.T. is supported by a Fonds de Recherche du Québec–Santé studentship. The funders had no role in study design, data collection and analysis, the decision to publish or the preparation of the manuscript. The graphical abstract was created using BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and K.A.T. conceived the project and designed the experiments. E.P., M.S., J. Downey, J.C., E.L., O.T. and E. K. performed the experiments. K.A.T., J. Ding and M.D. analyzed the data. K.A.T. and J. Ding performed RNA-seq bioinformatics analysis. K.A.T. and M.D. wrote the paper. M.D. supervised the project.

Corresponding author

Correspondence to Maziar Divangahi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Galit Alter, Maria Rescigno, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jamie D. K. Wilson, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reduction of viral replication and enrichment of CX3CR1hi T cells in BCG-IV mice.

(a) Confocal microscopy of vaccinated mice infected with Ruby-NS1 3 days post-infection, lung parenchyma sections (500 PFU). (b) Frequency of CD3+ and (c) CD19+ cells in blood of mice after 1 month BCG vaccination (n = 3-4) (d, e) Frequency and absolute number of CD11b+CX3CR1+ cells in the blood (n = 4). (f, g) Frequency and absolute number of CD11b+CX3CR1+ cells in the lung parenchyma (n = 4). (h, i) Frequency and absolute number of CX3CR1hi cells in the lung vasculature following 1 month BCG vaccination (n = 4-5). (j, k) Frequency and absolute number of CX3CR1hi cells in the bone marrow of mice following 1 month BCG vaccination. (n = 4-5). (l, m) Frequency and absolute number of CX3CR1hi cells in spleen of mice after 1 month BCG vaccination (n = 4-5). (n, o) Frequency and absolute number of CX3CR1hi cells in mediastinal lymph node of mice following month BCG vaccination (n = 4-5). (p, q) Kinetic of CD3+ cells and CD3+CX3CR1hi cells in blood of mice following BCG vaccination (n = 5). (r, s) Kinetic of CD3+ cells and CD3+CX3CR1hi cells in the lung parenchyma of mice following BCG vaccination (n = 5) (t, u) Frequency of CD4+ and CD8+ CX3CR1hi cells in blood and lung parenchyma following BCG vaccination (n = 5). Data are presented as mean ± s.e.m with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data were analyzed using One-way ANOVA followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 2 Transcriptional reprogramming of CX3CR1hi T cells.

(a) Splenocytes from BCG-IV mice were sorted in CX3CR1lo and CX3CR1hi T cells. 5 ×104 cells were stimulated for 5 hours with CD3/CD28 beads before Bioenergetic Flux Assay (Mito Stress Test) (n = 3). (b) Top enriched pathways between CX3CR1hi and CX3CR1lo T cells isolated from BCG-IV mice (n = 4). (c) Z score heatmap of T cell function and migration genes of CX3CR1hi T cells isolated from BCG-IV mice compared to CX3CR1hi and CX3CR1lo isolated from PBS-IV mice (n = 4). Data are presented as mean ± s.e.m with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data were analyzed using unpaired two-tailed t test (a), One-sided Fisher’s exact test (b) or Mann-Whitney two-tailed test (b).

Source data

Extended Data Fig. 3 Kinetics of CX3CR1hi T cells in the circulation and lungs.

(a–c) Absolute number of CD8+ CX3CR1hi T cells post IAV-PR8 infection in mice following 1 month BCG vaccination in the blood, lung parenchyma and BAL (left to right) (50 PFU; n = 4-5) (d) Pulmonary levels of CX3CL1 at day 3 post IAV-PR8 infection in mice after 1 month BCG vaccination (n = 5). (e) Frequency of CD4+ CX3CR1hi T cells in the blood mice following 2 months, 3 months and 6 months BCG-vaccination, shown as frequency of viable cells (n = 5). (f) Absolute number of CD11b+ CX3CR1+ cells in the blood and lung parenchyma of CX3CR1gfp/gfp mice after 1 month BCG vaccination (n = 3-5). (g) BCG CFUs in antibiotic-treated and BCG-vaccinated mice (n = 5). Data are presented as mean ± s.e.m with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data were analyzed using One- or Two-way ANOVA followed by Tukey’s multiple comparisons test.

Source data

Extended Data Fig. 4 BCG-induced cross-protection against IAV is mediated via bystander memory T cell activation.

(a) Absolute number of CD8+ NP+ memory T cells and (b) CD4+ NP + memory T cells at day 9 post IAV-PR8 infection in the lung parenchyma of mice following 1 month BCG vaccination (50 PFU; n = 4-5). (c, d) Frequency of IFNγ-producing NK1.1+ and CD11b+ cells at day 1 post IAV-PR8 infection in IfngeYFP mice following 1 month BCG vaccination (50 PFU; n = 4-5). (e) TNFα -producing CD4+ T cells isolated from the lung tissue of BCG vaccinated mice and stimulated in vitro with PMA/ionomycin for 5 h (n = 5). (f) Frequency of TNFα-producing splenic T cells isolated from BCG-vaccinated mice following 5 h in vitro stimulation. (n = 5) (g) Total concentration of TNFα in splenic T cells isolated from BCG-vaccinated mice after 5-hour in vitro stimulation (n = 5). (h) MFI of MHCII of AMs in the BAL following BCG vaccination and IFNγ neutralization treatment (n = 3). (i) IFNγ serum concentrations in IFNγ ARE del mice (n = 5). Data are presented as mean ± s.e.m with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data were analyzed using One-way ANOVA followed by Tukey’s multiple comparisons test (a-h) or unpaired two-tailed t-test (i).

Source data

Extended Data Fig. 5 Gating strategy for CX3CR1hi T cells.

Single viable cells were separated for vascular leukocytes and parenchymal leukocytes, then gated for T cells (CD11b CD3+) and CX3CR1hi. Sample obtained from 4 week-vaccinated BCG-IV mouse, mouse was intravascularly stained to discriminate between lung vasculature and parenchyma. Data was analysed by FlowJo software.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data (Excel).

Source Data Fig. 2

Statistical source data (Excel).

Source Data Fig. 3

Statistical source data (Excel).

Source Data Fig. 4

Statistical source data (Excel).

Source Data Fig. 5

Statistical source data (Excel).

Source Data Fig. 6

Statistical source data (Excel).

Source Data Extended Data Fig. 1

Statistical source data (Excel).

Source Data Extended Data Fig. 2

Statistical source data (Excel).

Source Data Extended Data Fig. 3

Statistical source data (Excel).

Source Data Extended Data Fig. 4

Statistical source data (Excel).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.A., Pernet, E., Sadeghi, M. et al. BCG immunization induces CX3CR1hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity. Nat Immunol 25, 418–431 (2024). https://doi.org/10.1038/s41590-023-01739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01739-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing