Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells

Abstract

Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brillouin light scattering anisotropy microscopy (BLAM).
Fig. 2: BLS anisotropy of A. thaliana hypocotyl cell walls is perturbed in pme5o mutants.
Fig. 3: Cell nuclei have a spatially heterogeneous and locally oscillating BLS anisotropy.
Fig. 4: Scaling of the BLS anisotropy in cell nuclei reveals long-range correlations.

Similar content being viewed by others

Data availability

Data for this study are available in the main text or Supplementary Information, and where not the case, available at https://doi.org/10.5281/zenodo.10465950.

Code availability

Code used for the analysis of data that has not already been published elsewhere is available at https://doi.org/10.5281/zenodo.10465950.

References

  1. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    CAS  Google Scholar 

  2. Hu, S. et al. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. Cell Physiol. 287, C1184–C1191 (2004).

    CAS  PubMed  Google Scholar 

  3. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    CAS  PubMed  Google Scholar 

  4. Hasnain, I. A. & Donald, A. M. Microrheological characterization of anisotropic materials. Phys. Rev. E 73, 031901 (2006).

    ADS  CAS  Google Scholar 

  5. Boon, J. P. & Yip, S. Molecular Hydrodynamics (Dover, 1991).

  6. Tao, N. J., Lindsay, S. M. & Rupprecht, A. The dynamics of the DNA hydration shell at gigahertz frequencies. Biopolymers 26, 171–188 (1987).

    CAS  PubMed  Google Scholar 

  7. Adichtchev, S. V. et al. Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration. Phys. Rev. E 99, 062410 (2019).

    ADS  CAS  PubMed  Google Scholar 

  8. Bailey, M. et al. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: a probe of tissue micromechanics. Sci. Adv. 6, eabc1937 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, G., Monnier, S., Mouelhi, M. & Dehoux, T. Probing molecular crowding in compressed tissues with Brillouin light scattering. Proc. Natl Acad. Sci. USA 119, e2113614119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  11. Berne, B. J. & Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics (Dover, 2000).

  12. Antonacci, G. et al. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys. Rev. 12, 615–624 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Palombo, F. et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J. R. Soc. Interface 11, 20140739 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262–267 (2013).

    ADS  CAS  PubMed  Google Scholar 

  15. Eltony, A. M., Shao, P. & Yun, S.-H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat. Commun. 13, 1354 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, J., Nikolic, M., Tanner, K. & Scarcelli, G. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy. Nat. Methods 20, 677–681 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bevilacqua, C. et al. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development. Nat. Methods 20, 755–760 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Verdonk, E. D., Wickline, S. A. & Miller, J. G. Anisotropy of ultrasonic velocity and elastic properties in normal human myocardium. J. Acoust. Soc. Am. 92, 3039–3050 (1992).

    ADS  CAS  PubMed  Google Scholar 

  20. Crank, J. The Mathematics of Diffusion 2nd edn (Clarendon Press, 1975).

  21. Webb, J. N., Zhang, H., Sinha Roy, A., Randleman, J. B. & Scarcelli, G. Detecting mechanical anisotropy of the cornea using Brillouin microscopy. Transl. Vis. Sci. Technol. 9, 26 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Cosgrove, D. J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    CAS  PubMed  Google Scholar 

  23. Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    ADS  CAS  PubMed  Google Scholar 

  24. Xi, X., Kim, S. H. & Tittmann, B. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J. Appl. Phys. 117, 024703 (2015).

    ADS  Google Scholar 

  25. Wang, X., Wilson, L. & Cosgrove, D. J. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 71, 2629–2640 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003–1007 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trinh, D.-C. et al. How mechanical forces shape plant organs. Curr. Biol. 31, R143–R159 (2021).

    CAS  PubMed  Google Scholar 

  28. Gadalla, A., Dehoux, T. & Audoin, B. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves. Planta 239, 1129–1137 (2014).

    CAS  PubMed  Google Scholar 

  29. Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal. 9, rs5 (2016).

    PubMed  Google Scholar 

  30. Bacete, L. et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 119, e2119258119 (2022).

    CAS  PubMed  Google Scholar 

  31. Monshausen, G. B., Messerli, M. A. & Gilroy, S. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol. 147, 1690–1698 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rygol, J., Büchner, K.-H., Winter, K. & Zimmermann, U. Day/night variations in turgor pressure in individual cells of Mesembryanthemum crystallinum L. Oecologia 69, 171–175 (1986).

    ADS  PubMed  Google Scholar 

  33. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Hansen, J. C., Maeshima, K. & Hendzel, M. J. in Epigenetics and Chromatin 14 (BioMed Central, 2021).

  35. Gibson, B. A. et al. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties. Proc. Natl Acad. Sci. USA 120, e2218085120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsushita, K. et al. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells. FASEB J. 35, e22071 (2021).

    CAS  PubMed  Google Scholar 

  37. Yesbolatova, A. K., Arai, R., Sakaue, T. & Kimura, A. Formulation of chromatin mobility as a function of nuclear size during C. elegans embryogenesis using polymer physics theories. Phys. Rev. Lett. 128, 178101 (2022).

    ADS  CAS  PubMed  Google Scholar 

  38. Khanna, N., Zhang, Y., Lucas, J. S., Dudko, O. K. & Murre, C. Chromosome dynamics near the sol–gel phase transition dictate the timing of remote genomic interactions. Nat. Commun. 10, 2771 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. Eshghi, I., Eaton, J. A. & Zidovska, A. Interphase chromatin undergoes a local sol-gel transition upon cell differentiation. Phys. Rev. Lett. 126, 228101 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zidovska, A. The rich inner life of the cell nucleus: dynamic organization, active flows and emergent rheology. Biophys. Rev. 12, 1093–1106 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Zhang, J. et al. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small 16, 1907688 (2020).

    CAS  Google Scholar 

  42. Schlüßler, R. et al. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 11, e68490 (2022).

    PubMed  PubMed Central  Google Scholar 

  43. Fullgrabe, J., Hajji, N. & Joseph, B. Cracking the death code: apoptosis-related histone modifications. Cell Death Differ. 17, 1238–1243 (2010).

    CAS  PubMed  Google Scholar 

  44. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghavanloo, E. Persistence length of collagen molecules based on nonlocal viscoelastic model. J. Biol. Phys. 43, 525–534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  47. Strick, R., Strissel, P. L., Gavrilov, K. & Levi-Setti, R. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol. 155, 899–910 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lebeaupin, T., Smith, R. & Huet, S. in Nuclear Architecture and Dynamics 2 (eds Lavelle, C. & Victor, J.-M.) 209–232 (Academic Press, 2018).

  49. Gerace, L. Molecular trafficking across the nuclear pore complex. Curr. Opin. Cell Biol. 4, 637–645 (1992).

    CAS  PubMed  Google Scholar 

  50. Remer, I., Shaashoua, R., Shemesh, N., Ben-Zvi, A. & Bilenca, A. Publisher correction: high-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods 17, 1060 (2020).

    CAS  PubMed  Google Scholar 

  51. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    ADS  CAS  PubMed  Google Scholar 

  52. Lee, C. F. & Wurtz, J. D. Novel physics arising from phase transitions in biology. J. Phys. D 52, 023001 (2018).

    ADS  Google Scholar 

  53. Gompper, G. et al. The 2020 motile active matter roadmap. J. Phys. Condens. Matter 32, 193001 (2020).

    ADS  CAS  PubMed  Google Scholar 

  54. Elsayad, K. et al. Mechanical properties of cellulose fibers measured by Brillouin spectroscopy. Cellulose 27, 4209–4220 (2020).

    CAS  Google Scholar 

  55. Wang, S. et al. Biomechanical assessment of myocardial infarction using optical coherence elastography. Biomed. Opt. Express 9, 728–742 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2022).

    CAS  PubMed  Google Scholar 

  57. Diego, X., Marcon, L., Müller, P. & Sharpe, J. Key features of Turing systems are determined purely by network topology. Phys. Rev. 8, 021071 (2018).

    CAS  Google Scholar 

  58. Schreiber, B., Elsayad, K. & Heinze, K. G. Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy. Opt. Lett. 42, 3880–3883 (2017).

    ADS  CAS  PubMed  Google Scholar 

  59. Shijun, X., Weiner, A. M. & Lin, C. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory. IEEE J. Quantum Electron. 40, 420–426 (2004).

    ADS  Google Scholar 

  60. Edrei, E., Gather, M. C. & Scarcelli, G. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express 25, 6895–6903 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J., Fiore, A., Yun, S. H., Kim, H. & Scarcelli, G. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci. Rep. 6, 35398 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nikolic, M. & Scarcelli, G. Long-term Brillouin imaging of live cells with reduced absorption-mediated damage at 660-nm wavelength. Biomed. Opt. Express 10, 1567–1580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS  Google Scholar 

  64. Peaucelle, A., Wightman, R. & Höfte, H. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25, 1746–1752 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Vienna Biocenter Core Facilities (Plant Science Facility and Advanced Microscopy Facility), and thank A. Dammermann for critical reading of the manuscript. H.K., M.U. and K.E. acknowledge funding from EU Interreg grants nos. V-A AT-CZ, RIAT-CZ and ATCZ40, the City of Vienna and the Austrian Ministry of Science (Vision 2020) and CEITEC Nano/CzechNanoLab Research Infrastructure funded by MEYS CR (LM2023051). J.M.P., W.J.W. and K.E. acknowledge funding from the Medical University of Vienna. D.C. and J.M.P. acknowledge funding from the Austrian Academy of Science. H.K. acknowledges funding from a Marie Skłodowska-Curie Action Individual Fellowship (H2020-MSCA-IF-2020, 101032071) and an Adolf-Martens fellowship from BAM. A.P. acknowledges funding from the project ANR-17-CE13-0007 ANR ‘GoodVibrations’. J.M.P. acknowledges funding from the T. von Zastrow Foundation, the Canada 150 Research Chairs Program F18-01336 and the German Federal Ministry of Education and Research (BMBF) under the project ‘Microbial Stargazing—Erforschung von Resilienzmechanismen von Mikroben und Menschen’ (ref. 01KX2324). K.E. acknowledges funding from the Austrian Science Fund—FWF (P34783).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and project administration were provided by K.E., methodology by H.K., D.C., M.S., L.S., L.-M.A., M.U., I.Y., D.S., W.J.W., A.P., J.P. and K.E., investigation and visualization by H.K., D.C., M.S., L.S., L.-M.A. and K.E., funding acquisition by M.U. and K.E. and supervision by M.U., I.Y., D.S., J.P. and K.E. The original draft was written by K.E. and I.Y., with review and editing carried out by all authors.

Corresponding author

Correspondence to Kareem Elsayad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Francesca Palombo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshmiri, H., Cikes, D., Samalova, M. et al. Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells. Nat. Photon. 18, 276–285 (2024). https://doi.org/10.1038/s41566-023-01368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01368-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing