Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causation in neuroscience: keeping mechanism meaningful

Abstract

A fundamental goal of research in neuroscience is to uncover the causal structure of the brain. This focus on causation makes sense, because causal information can provide explanations of brain function and identify reliable targets with which to understand cognitive function and prevent or change neurological conditions and psychiatric disorders. In this research, one of the most frequently used causal concepts is ‘mechanism’ — this is seen in the literature and language of the field, in grant and funding inquiries that specify what research is supported, and in journal guidelines on which contributions are considered for publication. In these contexts, mechanisms are commonly tied to expressions of the main aims of the field and cited as the ‘fundamental’, ‘foundational’ and/or ‘basic’ unit for understanding the brain. Despite its common usage and perceived importance, mechanism is used in different ways that are rarely distinguished. Given that this concept is defined in different ways throughout the field — and that there is often no clarification of which definition is intended — there remains a marked ambiguity about the fundamental goals, orientation and principles of the field. Here we provide an overview of causation and mechanism from the perspectives of neuroscience and philosophy of science, in order to address these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The narrow and broad notions of mechanism.

Similar content being viewed by others

References

  1. Woodward, J. in Explanation and Integration in Mind and Brain Science (ed. Kaplan, M.) 70–100 (Oxford Univ. Press, 2017).

  2. Marinescu, I. E., Lawlor, P. N. & Kording, K. P. Quasi-experimental causality in neuroscience and behavioural research. Nat. Hum. Behav. 2, 891–898 (2018).

    Article  PubMed  Google Scholar 

  3. Weichwald, S. & Peters, J. Causality in cognitive neuroscience: concepts, challenges, and distributional robustness. J. Cog. Neurosci. 33, 226–247 (2021).

    Article  Google Scholar 

  4. Uddin, L. Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat. Rev. Neurosci. 22, 167–179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crockett, M. J. & Fehr, E. Social brains on drugs: tools for neuromodulation in social neuroscience. Soc. Cogn. Affect. Neurosci. 9, 250–254 (2014). This paper provides an important review of methodological considerations for the use of neuromodulation in social neuroscience.

    Article  PubMed  Google Scholar 

  6. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001).

  7. Trappenberg, T. Fundamentals of Computational Neuroscience 2nd edn (Oxford Univ. Press, 2010).

  8. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Computational Biol. 1, e42 (2005).

    Article  Google Scholar 

  9. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19, 1718–1726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Masse, N. Y., Yang, G. R., Song, H. F., Wang, X. & Freedman, D. J. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat. Neurosci. 22, 1159–1167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubin, J., Rinzel, J., Arbib, M. A. & Bonaiuto, J. J. in From Neuron to Cognition via Computational Neuroscience (eds Arbib, M. A. & Bonaiuto, J. J.) 101–128 (MIT Press, 2016).

    Google Scholar 

  13. Vierling-Claasen, N. & Jones, S. Neural rhythms. in From Neuron to Cognition via Computational Neuroscience (eds Arbib, M.A. & Bonaiuto, J.J.) 129–158 (MIT Press, 2016).

  14. Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms. NeuroImage 160, 84–96 (2017).

    Article  PubMed  Google Scholar 

  15. Leaver, A. M., Espinoza, R., Wade, B. & Narr, K. L. Parsing the network mechanisms of electroconvulsive therapy. Biol. Psychiatry 92, 193–203 (2022).

    Article  PubMed  Google Scholar 

  16. Salgado-Puga, K. & Pena-Ortega, F. Cellular and network mechanisms underlying memory impairment induced by amyloid β protein. Protein Pept. Lett. 22, 303–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Cognigni, P., Felsenberg, J. & Waddell, S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol. 49, 51–58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parkin, B. L., Hellyer, P. J., Leech, R. & Hampshire, A. Dynamic network mechanisms of relational integration. J. Neurosci. 35, 7660–7673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kedia, G., Mussweiler, T. & Linden, D. E. J. Brain mechanisms of social comparison and their influence on the reward system. NeuroReport 25, 1255–1265 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanchez-Romero, R. & Cole, M. W. Combining multiple functional connectivity methods to improve causal inferences. J. Cogn. Neurosci. 33, 180–194 (2021).

    Article  PubMed  Google Scholar 

  21. Schoonover, C. E., Fink, A. J. P., Poo, C. & Yuan, Q. Editorial: neuromodulation in olfaction, volume II. Front. Cell. Neurosci. 17, 1146770 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Popovitchenko, T. & Rasin, M. Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination. Front. Neuroanat. 11, 102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saunders, N. R., Ek, C. J., Habgood, M. D. & Dziegielewska, K. M. Barriers in the brain: a renaissance? Trends Neurosci. 31, 279–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Bechtel, W. &. Richardson, R. C. Discovering Complexity (MIT Press, 2010).

  25. Craver, C. F. Explaining the Brain (Oxford Univ. Press, 2007).

  26. Ross, L. N. Cascade verus mechanism: the diversity of causal structure in science. Brit. J. Philos. Sci. https://doi.org/10.1086/723623 (2023).

  27. Woodward, J. Making Things Happen (Oxford Univ. Press, 2003). This book presents a foundational and mainstream account of causation and causal explanation.

  28. McIntosh, A. R. & Jirsa, V. K. The hidden repertoire of brain dynamics and dysfunction. Netw. Neurosci. 3, 994–100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Potochnik. P. Idealization and the Aims of Science (Univ. of Chicago Press, 2017).

  30. Barwich, A. Imaging the living brain: an argument for ruthless reductionism from olfactory neurobiology. J. Theor. Biol. 512, 110560 (2021).

    Article  PubMed  Google Scholar 

  31. Bickle, J., Mandik, P. & Landreth, A. The philosophy of neuroscience. Standford Encylopedia of Philosophy https://plato.stanford.edu/entries/neuroscience/ (2019).

  32. Delehanty, M. The changing landscape of the philosophy of medicine. Philos. Compass https://doi.org/10.1111/phc3.12612 (2019).

  33. Reiss, J. & Ankeny, R. Philosophy of medicine. Standford Encylopedia of Philosophy https://plato.stanford.edu/entries/medicine/ (2016).

  34. Ward, Z. B. Cognitive variation: the philosophical landscape. Philos. Compass https://doi.org/10.1111/phc3.12882 (2022).

  35. Henry, J. The Scientific Revolution and the Origins of Modern Science 2nd edn [Studies in European History] (Palgrave, 2001).

  36. Dijksterhuis, E. J. The Mechaniation of the World Picture (Princeton Univ. Press, 1986).

  37. Weber, M. Philosophy of Developmental Biology 1st edn (Cambridge Univ. Press, 2022).

  38. Machamer, P., Darden, L. & Craver, C. F. Thinking about mechanisms. Philos. Sci. 67, 1–25 (2000). This paper contains an influential account of mechanism, which has inspired and influenced much current work on the topic.

    Article  Google Scholar 

  39. Craver, C. F. & Darden, L. In Search of Mechanisms (Univ. Chicago Press, 2013).

  40. Woodward, J. & Ross, L. Scientific explanation. Stanford Encyclopedia of Philosophy https://plato.stanford.edu/entries/scientific-explanation/ (2021).

  41. Ross, L. & Woodward, J. Causal approaches to explanation. Stanford Encyclopedia of Philosophy https://plato.stanford.edu/entries/causal-explanation-science/ (2023).

  42. Woodward, J. What is a mechanism? A counterfactual account. Philos. Sci. 69, S366–S377 (2002).

    Article  Google Scholar 

  43. Craver, C. F. & Tabery, J. Mechanisms in science. Standford Encylopedia of Philosophy https://plato.stanford.edu/entries/science-mechanisms/ (2015).

  44. Ross, L. N. Causal concepts in biology: how pathways differ from mechanisms and why it matters. Br. J. Philos. Sci. 72, 131–158 (2021). This paper provides a clear account of the pathway and mechanism concepts, including how they differ and how they explain.

    Article  Google Scholar 

  45. Russo, F. & Williamson, J. Interpreting causality in the health sciences. Int. Stud. Philos. Sci. 21, 157–170 (2007).

    Article  Google Scholar 

  46. Woodward, J. Mechanistic explanation: its scope and limits. Proc. Aristot. Soc. LXXXVII, 39–65 (2013).

    Article  Google Scholar 

  47. Dupré, J. A. Living causes. Aristot. Soc. Suppl. Vol. 87, 19–37 (2013).

    Article  Google Scholar 

  48. Ross, L. N. Tracers in neuroscience: causation, constraints, and connectivity. Synthese 199, 4077–4095 (2021).

    Article  Google Scholar 

  49. Ross, L. N. Causal selection and the pathway concept. Philos. Sci. 85, 551–572 (2018).

    Article  Google Scholar 

  50. Gessell, B. S., Stanley, M. L., Geib, B. & De Brigard, F. in Neural Mechanisms: New Challenges in the Philosophy of Neuroscience (eds. Calzavarini, F. & Viola, M.) 35–55 (Springer, 2020).

  51. Skillings, D. J. Mechanistic explanation of biological processes. Philos. Sci. 82, 1139–1151 (2015).

    Article  Google Scholar 

  52. Halina, M. in The Routledge Handbook of Mechanisms and Mechanical Philosophy (eds. Glennan, S & Illari, P.) 213–224 (Routledge, 2018).

  53. MacLeod, M. & Nersessian, N. J. Modeling complexity: cognitive constraints and computational model-building in integrative systems biology. Hist. Philos. Life Sci. 40, 17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dupré, J. & Nicholson, D. J. (eds.) Everything Flows: Towards a Processual Philosophy of Biology (Oxford Univ. Press, 2018). This book expands on causal process views of living systems, which are contrasted with the mechanism perspective.

  55. Dupré, J. A. Causally powerful processes. Synthese 199, 10667–10683 (2021).

    Article  Google Scholar 

  56. Bechtel, W. & Levy, A. Abstraction and the organization of mechanisms. Technical report. Philos. Sci. 80, 241–261 (2013).

    Article  Google Scholar 

  57. Robins, S. K. & Craver, C. J. in The Oxford Handbook of Philosophy and Neuroscience (ed. Bickle, J.) 41–67 (Oxford Univ. Press, 2009).

  58. Kaplan, D. M. Explanation and Integration in Mind and Brain Science (Oxford Univ. Press, 2017).

  59. Hedström, P. & Ylikoski, P. Causal mechanisms in the social sciences. Annu. Rev. Sociol. 36, 49–67 (2010).

    Article  Google Scholar 

  60. Ross, L. N. What is social structural explanation? A causal account. Nous https://doi.org/10.1111/nous.12446 (2023).

  61. Hendry, D. F. The encompassing implications of feedback versus feedforward mechanisms in econometrics. Oxf. Economic Pap. 40, 132–149 (1988).

    Article  Google Scholar 

  62. Qin, Z. et al. Combustion chemistry of propane: a case study of detailed reaction mechanism optimization. Proc. Combust. Inst. 28, 1663–1669 (2000).

    Article  CAS  Google Scholar 

  63. Godfrey-Smith, P. in The Oxford Handbook of Causation (eds Beebee, H., Menzies, P. & Hitchcock, C.) 326–337 (Oxford Univ. Press, 2010).

  64. Chirimuuta, M. Explanation in computational neuroscience: causal and non-causal. Br. J. Philos. Sci. 69, 849–880 (2018).

    Article  Google Scholar 

  65. Chirimuuta, M. Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience. Synthese 191, 127–153 (2014).

    Article  Google Scholar 

  66. Rust, N. C. & LeDoux, J. E. The tricky business of defining brain functions. Trends Neurosci. 46, 3–4 (2023). This paper outlines important challenges associated with defining, measuring and studying scientific phenomena of interest.

    Article  CAS  PubMed  Google Scholar 

  67. Rabuffo, G., Fousek, J., Bernard, C. & Jirsa, V. Neuronal cascades shape whole-brain functional dynamics at rest. eNeuro https://doi.org/10.1523/ENEURO.0283-21.2021 (2021).

  68. Karuza, E. A., Thompson-Schill, S. L. & Bassett, D. S. Local patterns to global architectures: influences of network topology on human learning. Trends Cogn. Sci. 20, 629–640 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharpley, C. F. & Bitsika, V. Joining the dots: neurobiological links in a functional analysis of depression. Behav. Brain Funct. 6, 73 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Viding, E. & McCrory, E. Disruptive behavior disorders: the challenge of delineating mechanisms in the face of heterogeneity. Am. J. Psychiatry 177, 811–817 (2020). This article provides an important account of types of causal heterogeneity and causal complexity in psychiatry, psychology and neuroscience.

    Article  PubMed  Google Scholar 

  72. Thomas, M. S. C. & Coecke, S. Associations between socioeconomic status, cognition, and brain structure: evaluating potential causal pathways through mechanistic models of development. Cogn. Sci. 47, e13217 (2023). This paper presents an important current framework for understanding social causes, with reliance on the causal pathway concept.

    Article  PubMed  Google Scholar 

  73. Elsabbagh, M. Linking risk factors and outcomes in autism spectrum disorder: is there evidence for resilience? BMJ 368, l6880 (2020).

    Article  PubMed  Google Scholar 

  74. Bielczyk, N. Z. et al. Disentangling causal webs in the brain using functional magnetic resonance imaging: a review of current approaches. Netw. Neurosci. 3, 237–273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Deng, Y., Reinhart, R. M., Choi, I. & Shinn-Cunningham, B. G. Causal links between parietal α activity and spatial auditory attention. eLife 8, e51184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perrin, E. & Venance, L. Bridging the gap between striatal plasticity and learning. Curr. Opin. Neurobiol. 54, 104–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Kuntsi, J. & Klein, C. in Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment Vol. 9 (eds Stanford, C. & Tannock, R.) 67–91 (Springer, 2012).

  78. Willmore, L., Cameron, C., Yang, J., Witten, I. B. & Falkner, A. L. Behavioural and dopaminergic signatures of resilience. Nature 611, 124–132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vemuri, P. et al. Amyloid, vascular, and resilience pathways associated with cognitive aging. Ann. Neurol. 86, 866–877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sommer, I. E., Kleijer, H. & Hugdahl, K. Toward personalized treatment of hallucinations. Curr. Opin. Psychiatry 31, 237–245 (2018).

    Article  PubMed  Google Scholar 

  81. Al-Diwani, A. A. J., Pollak, J. A., Irani, S. R. & Lennox, B. R. Psychosis: an autoimmune disease? Immunology 152, 388–401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lappin, J. M. & Sara, G. E. Psychostimulant use and the brain. Addiction 114, 2065–2077 (2019).

    Article  PubMed  Google Scholar 

  83. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Srivastava, P. et al. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw. Neurosci. 4, 1122–1159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cartwright, N. Causation: one word, many things. Philos. Sci. 71, 805–819 (2004).

    Article  Google Scholar 

  87. Diano, S. A new brain circuit in feeding control. Science 361, 29–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Langdon, C., Genkin, M. & Engel, T. A. A unifying perspective on neural manifolds and circuits for cognition. Nat. Rev. Neurosci. 24, 363–377 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Havlík, M., Hlinka, J., Klírová, M., Adámek, P. & Horáček, J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci. Conscious. 2023, niad008 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Misić, B., Mills, T., Taylor, M. J. & McIntosh, A. R. Brain noise is task dependent and region specific. J. Neurophysiol. 104, 2667–2676 (2010).

    Article  PubMed  Google Scholar 

  92. O’Reilly, R. & Munakata, Y. Computational Explorations in Cognitive Neuroscience (MIT Press, 2000).

  93. National Institute of Health. Support for clinical trials at NIMH. National Institute of Mental Health https://www.nimh.nih.gov/funding/opportunities-announcements/clinical-trials-foas (2023).

  94. Mehler, D. & Kording, K. The lure of causal statements: rampant mis-inference of causality in estimated connectivity. Preprint at arXiv https://doi.org/10.48550/arXiv.1812.03363 (2018).

  95. Wolff, S. B. & Olveczky, B. P. The promise and perils of causal circuit manipulations. Curr. Opin. Neurobiol. 49, 84–94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Faskowitz, J., Betzel, R. F. & Sporns, O. Edges in brain networks: contributions to models of structure and function. Netw. Neurosci. 6, 1–28 (2021).

    Google Scholar 

  97. Tozzi, A. & Peters, J. F. A topological approach unveils system invariances and broken symmetries in the brain: system invariances and broken symmetries in the brain. J. Neurosci. Res. 94, 351–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Woodward, J. in Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanation (eds. Reutlinger, A. & Saatsi, J.) 117–137 (Oxford Univ. Press, 2019).

  99. Ross, L. N. Distinguishing topological and causal explanation. Synthese 198, 9803–9820 (2020).

    Article  Google Scholar 

  100. Chiao, J. Y. Developmental aspects in cultural neuroscience. Dev. Rev. 50, 77–89 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Amodio, D. M. The neuroscience of prejudice and stereotyping. Nat. Rev. Neurosci. 15, 670–682 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Falcon, M. I. et al. Functional mechanisms of recovery after chronic stroke: modeling with the virtual brain. eNeuro https://doi.org/10.1523/ENEURO.0158-15.2016 (2016).

  104. Adams, J. N., Maass, A., Harrison, T. M., Baker, S. L. & Jagust, W. Cortical tau deposition follows patterns of entorhinal functional connectivity in aging. eLife 8, e49132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lempart, J. et al. Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity. Life Sci. Alliance 2, e201900486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Capone, C. et al. Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics. eLife 5, e17536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shuvaev, S. A., Tran, N. B., Stephenson-Jones, M., Li, B. & Koulakoc, A. Neural networks with motivation. OpenReview https://openreview.net/forum?id=BJlJVCEYDB (2020).

  108. Seals, D. R. Publishing particulars: part 3. General writing tips, editing, and responding to peer review. Am. J. Physiol. Regul. Integr. Comp. Physiol. 324, R409–R424 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Andersen, O. S. Editorial practices, scientific impact, and scientific quality. J. Gen. Physiol. 131, 1 (2008).

    Article  PubMed Central  Google Scholar 

  110. Pugh, E. N. Kudos to reviewers for the JGP: you make our science better. J. Gen. Physiol. 133, 129–130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pugh, E. N. The legacy of Olaf Sparre Andersen and future directions of the Journal of General Physiology. J. Gen. Physiol. 132, 1–3 (2008).

    Article  PubMed Central  Google Scholar 

  112. Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990).

    Google Scholar 

  113. Chalmers, D. J. in Neural Correlates of Consciousness: Empirical and Conceptual Questions (ed. Metzinger, T.) 17–39 (MIT Press, 2000).

  114. Wu, W. The neuroscience of consciousness. Standford Encylopedia of Philosophy https://plato.stanford.edu/entries/consciousness-neuroscience/ (2018).

  115. Velmans, M. Understanding Consciousness 2nd edn (Routledge, 2009).

  116. De Graaf, T. A., Hsieh, P. & Sack, A. T. The ‘correlates’ in neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 191–197 (2012).

    Article  PubMed  Google Scholar 

  117. Aru, J., Bachmann, T., Singer, W. & Melloni, L. Distilling the neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 737–746 (2012).

    Article  PubMed  Google Scholar 

  118. Rust, N. C. et al. A call for more clarity around causality in neuroscience. Trends Neurosci. 45, 654–655 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mill, R. D., Ito, T. & Cole, M. W. From connectome to cognition: the search for mechanism in human functional brain networks. NeuroImage 160, 124–139 (2017).

    Article  PubMed  Google Scholar 

  120. Kueffer, C. & Larson, B. M. H. Responsible use of language in scientific writing and science communication. BioScience 64, 719–724 (2014).

    Article  Google Scholar 

  121. Boudry, M. & Pigliucci, M. The mismeasure of machine: synthetic biology and the trouble with engineering metaphors. Stud. Hist. Philos. Sci. Part. C: Stud. Hist. Philos. Biol. Biomed. Sci. 44, 660–668 (2013).

    Google Scholar 

  122. Li, F. et al. Investigating dynamic causal network with unified Granger causality analysis. J. Neurosci. Methods 383, 109720 (2023).

    Article  PubMed  Google Scholar 

  123. Li, G. & Yap, P. From descriptive connectome to mechanistic connectome: generative modeling in functional magnetic resonance imaging analysis. Front. Hum. Neurosci. 16, 940842 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Paraouty, N. et al. Sensory cortex plasticity supports auditory social learning. Nat. Commun. 14, 5828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hackman, D. A., Farah, M. J. & Meaney, M. J. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11, 651–659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soleimani, B. et al. NLGC: network localized Granger causality with application to MEG directional functional connectivity analysis. NeuroImage 260, 119496 (2022).

    Article  PubMed  Google Scholar 

  127. Woodward, J. A functional account of causation; or, a defense of the legitimacy of causal thinking by reference to the only standard that matters: usefulness (as opposed to metaphysics or agreement with intuitive judgment). Philos. Sci. https://doi.org/10.1086/678313 (2014).

  128. Danks, D. & Davis, I. Causal inference in cognitive neuroscience. WIREs Cogn. Sci. 14, e1650 (2023).

    Article  Google Scholar 

  129. Ross, L. N. Dynamical models and explanation in neuroscience. Philos. Sci. 82, 32–54 (2015).

    Article  Google Scholar 

  130. Allen, C. On (not) defining cognition. Synthese 194, 4233–4249 (2017).

    Article  Google Scholar 

  131. Ludwig, D. & Ruphy, S. Scientific pluralism. Standford Encylopedia of Philosophy https://plato.stanford.edu/entries/scientific-pluralism/ (2021).

  132. Woodward, J. Causation With a Human Face (Oxford Univ. Press, 2021).

  133. Author guidelines. Ann. Neurol. https://onlinelibrary.wiley.com/page/journal/15318249/homepage/forauthors.html (2023).

  134. Guide for authors. Biol. Psychiatry https://www.biologicalpsychiatryjournal.com/article/S0006-3223(20)31560-2/fulltext (2020).

  135. Author information pack. Exp. Neurol. https://www.sciencedirect.com/journal/experimental-neurology/publish/guide-for-authors (2023).

  136. Information for authors. Lancet Neurol. https://www.thelancet.com/pb/assets/raw/Lancet/authors/tln-info-for-authors-1686637133557.pdf (2023).

  137. National Institute of Health. Neuroscience research. National Institute of Neurological Disorders and Stroke https://www.ninds.nih.gov/current-research/research-funded-ninds/neuroscience-research (2023).

  138. NSF. Cognitive neuroscience (CogNeuro). Important information for proposers. National Science Foundation https://new.nsf.gov/funding/opportunities/cognitive-neuroscience-cogneuro (2015).

  139. NSF. Collaborative research in computational neuroscience (CRCNS). Important information for proposers. National Science Foundation https://new.nsf.gov/funding/opportunities/collaborative-research-computational-neuroscience (2020).

  140. NSF. Neural systems. Division of Integrative Organismal Systems Core Programs. Important information for proposers. National Science Foundation https://new.nsf.gov/funding/opportunities/neural-systems-0 (2011).

  141. Daniel, H., Levenes, C. & Crepel, F. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21, 401–407 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Woodward for helpful comments on this manuscript. This work was supported by an NSF Career Award and Templeton Foundation Grant to L.N.R.

Author information

Authors and Affiliations

Authors

Contributions

The authors both contributed to all aspects of the article preparation.

Corresponding author

Correspondence to Lauren N. Ross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks K. Friston; S. Genon, who co-reviewed with C. Rathkopf; and M. Halina for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Causation

The relationship between cause and effect, which provides information about explanation and control (unlike relationships that are merely correlational).

Classification

Any organization or ordering of entities into categories.

Description

Any specification of a system or its features, which need not convey causal information.

Explanation

An answer to scientific ‘why’ questions, which often cites causes or causal structure.

Philosophy of science

An area of philosophy that concerns the methods, reasoning, concepts and foundations of science.

Prediction

An estimate of future outcomes or forecasting, which need not require causal information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, L.N., Bassett, D.S. Causation in neuroscience: keeping mechanism meaningful. Nat. Rev. Neurosci. 25, 81–90 (2024). https://doi.org/10.1038/s41583-023-00778-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00778-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing