Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond-resolved non-dipole photoionization dynamics

Abstract

Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be tiny from the infrared to the soft X-ray domains, and all non-dipole observations reported so far were limited to single-pulse, single-colour measurements. Here we advance attosecond time-resolved spectroscopy into the non-dipole interaction regime. Using a self-referenced attosecond photoelectron interferometry on helium atoms, we resolve the electron subcycle motion along the light propagation direction in the 15 pm range driven by the magnetic component of a near-infrared laser field. Furthermore, we measure a time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions by resolving the asymmetry of the photoelectron forward–backward yields with attosecond resolution. These fundamental findings are supported by ab initio calculations based on the non-dipole time-dependent Schrödinger equation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attosecond non-dipole photoelectron interferometry.
Fig. 2: Photoelectron energy spectra in the forward and backward propagation directions.
Fig. 3: Magnetic-field-induced forward–backward shift of interference fringes.
Fig. 4: Electric-quadrupole-induced time-delay-dependent forward/backward asymmetry of spectral amplitude.

Similar content being viewed by others

Data availability

The data generated and analysed in this study are available via the ETH Zurich Research Collection at https://doi.org/10.3929/ethz-b-000638773.

References

  1. Krause, M. O. Photo-ionization of krypton between 300 and 1500 eV. Relative subshell cross sections and angular distributions of photoelectrons. Phys. Rev. 177, 151–157 (1969).

    Article  ADS  Google Scholar 

  2. Cooper, J. W. Photoelectron-angular-distribution parameters for rare-gas subshells. Phys. Rev. A 47, 1841–1851 (1993).

    Article  ADS  Google Scholar 

  3. Grundmann, S. et al. Observation of photoion backward emission in photoionization of He and N2. Phys. Rev. Lett. 124, 233201 (2020).

    Article  ADS  Google Scholar 

  4. Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science 370, 339–341 (2020).

    Article  ADS  Google Scholar 

  5. Amusia, M. & Chernysheva, L. Non-dipole effects in time delay of photoelectrons from atoms, negative ions, and endohedrals. JETP Lett. 112, 673–679 (2020).

    Article  ADS  Google Scholar 

  6. Pradhan, G. B. et al. Cooper minima: a window on nondipole photoionization at low energy. J. Phys. B 44, 201001 (2011).

    Article  ADS  Google Scholar 

  7. Ilchen, M. et al. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 9, 4659 (2018).

    Article  ADS  Google Scholar 

  8. Martin, N. L. et al. Electric-dipole-quadrupole interference of overlapping autoionizing levels in photoelectron energy spectra. Phys. Rev. Lett. 81, 1199–1202 (1998).

    Article  ADS  Google Scholar 

  9. Dolmatov, V. K. & Manson, S. T. Enhanced nondipole effects in low energy photoionization. Phys. Rev. Lett. 83, 939–942 (1999).

    Article  ADS  Google Scholar 

  10. Lambropoulos, P., Doolen, G. & Rountree, S. P. Electric quadrupole transitions in multiphoton ionization. Phys. Rev. Lett. 34, 636–639 (1975).

    Article  ADS  Google Scholar 

  11. Lambropoulos, M., Moody, S. E., Smith, S. J. & Lineberger, W. C. Observation of electric quadrupole transitions in multiphoton ionization. Phys. Rev. Lett. 35, 159–162 (1975).

    Article  ADS  Google Scholar 

  12. Reiss, H. R. Limits on tunneling theories of strong-field ionization. Phys. Rev. Lett. 101, 043002 (2008).

    Article  ADS  Google Scholar 

  13. Stambulchik, E. & Maron, Y. Zeeman effect induced by intense laser light. Phys. Rev. Lett. 113, 083002 (2014).

    Article  ADS  Google Scholar 

  14. Liang, J. et al. Zeeman effect in strong-field ionization. Phys. Rev. A 105, 043112 (2022).

    Article  ADS  Google Scholar 

  15. Smeenk, C. T. L. et al. Partitioning of the linear photon momentum in multiphoton ionization. Phys. Rev. Lett. 106, 193002 (2011).

    Article  ADS  Google Scholar 

  16. Willenberg, B., Maurer, J., Mayer, B. W. & Keller, U. Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization. Nat. Commun. 10, 5548 (2019).

    Article  ADS  Google Scholar 

  17. Ni, H. C. et al. Theory of subcycle linear momentum transfer in strong-field tunneling ionization. Phys. Rev. Lett. 125, 073202 (2020).

    Article  ADS  Google Scholar 

  18. Klaiber, M., Hatsagortsyan, K. Z. & Keitel, C. H. Subcycle time-resolved nondipole dynamics in tunneling ionization. Phys. Rev. A 105, 053107 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  19. Hartung, A. et al. Magnetic fields alter strong-field ionization. Nat. Phys. 15, 1222–1226 (2019).

    Article  Google Scholar 

  20. Klaiber, M., Yakaboylu, E., Bauke, H., Hatsagortsyan, K. Z. & Keitel, C. H. Under-the-barrier dynamics in laser-induced relativistic tunneling. Phys. Rev. Lett. 110, 153004 (2013).

    Article  ADS  Google Scholar 

  21. Liu, J., Xia, Q. Z., Tao, J. F. & Fu, L. B. Coulomb effects in photon-momentum partitioning during atomic ionization by intense linearly polarized light. Phys. Rev. A 87, 041403(R) (2013).

    Article  ADS  Google Scholar 

  22. Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption. Phys. Rev. Lett. 113, 263005 (2014).

    Article  ADS  Google Scholar 

  23. He, P. L., Lao, D. & He, F. Strong field theories beyond dipole approximations in nonrelativistic regimes. Phys. Rev. Lett. 118, 163203 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

    Article  ADS  Google Scholar 

  25. Maurer, J. et al. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime. Phys. Rev. A 97, 013404 (2018).

    Article  ADS  Google Scholar 

  26. Haram, N. et al. Relativistic nondipole effects in strong-field atomic ionization at moderate intensities. Phys. Rev. Lett. 123, 093201 (2019).

    Article  ADS  Google Scholar 

  27. Hartung, A. et al. Electric nondipole effect in strong-field ionization. Phys. Rev. Lett. 126, 053202 (2021).

    Article  ADS  Google Scholar 

  28. Lin, K. et al. Photoelectron energy peaks shift against the radiation pressure in strong-field ionization. Sci. Adv. 8, eabn7386 (2022).

    Article  Google Scholar 

  29. Reiss, H. R. Relativistic strong-field photoionization. J. Opt. Soc. Am. B 7, 574–586 (1990).

    Article  ADS  Google Scholar 

  30. Böning, B., Paufler, W. & Fritzsche, S. Nondipole strong-field approximation for spatially structured laser fields. Phys. Rev. A 99, 053404 (2019).

    Article  ADS  Google Scholar 

  31. Brennecke, S. & Lein, M. Nondipole modification of the ac Stark effect in above-threshold ionization. Phys. Rev. A 104, L021104 (2021).

    Article  ADS  Google Scholar 

  32. Lund, M. M. & Madsen, L. B. Nondipole photoelectron momentum shifts in strong-field ionization with mid-infrared laser pulses of long duration. J. Phys. B 54, 165602 (2021).

    Article  ADS  Google Scholar 

  33. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  34. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article  ADS  Google Scholar 

  35. Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).

    Article  ADS  Google Scholar 

  36. Gagnon, E. et al. Soft X-ray-driven femtosecond molecular dynamics. Science 317, 1374–1378 (2007).

    Article  ADS  Google Scholar 

  37. Huppert, M., Jordan, I., Baykusheva, D., von Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    Article  ADS  Google Scholar 

  38. Vos, J. et al. Orientation-dependent stereo wigner time delay and electron localization in a small molecule. Science 360, 1326–1330 (2018).

    Article  ADS  Google Scholar 

  39. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  40. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  41. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  42. Gong, X. et al. Attosecond spectroscopy of size-resolved water clusters. Nature 609, 507–511 (2022).

    Article  ADS  Google Scholar 

  43. Jordan, I. et al. Attosecond spectroscopy of liquid water. Science 369, 974–979 (2020).

    Article  ADS  Google Scholar 

  44. Dahlström, J. et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013).

    Article  Google Scholar 

  45. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    Article  ADS  Google Scholar 

  46. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

    Article  ADS  Google Scholar 

  47. Kylstra, N. J., Potvliege, R. M. & Joachain, C. J. Photon emission by ions interacting with short intense laser pulses: beyond the dipole approximation. J. Phys. B 34, L55 (2001).

    Article  ADS  Google Scholar 

  48. Klaiber, M., Hatsagortsyan, K. Z. & Keitel, C. H. Above-threshold ionization beyond the dipole approximation. Phys. Rev. A 71, 033408 (2005).

    Article  ADS  Google Scholar 

  49. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  50. Krüger, C., Fuchs, J., Cattaneo, L. & Keller, U. Attosecond resolution from free running interferometric measurements. Opt. Express 28, 12862–12871 (2020).

    Article  ADS  Google Scholar 

  51. Cireasa, R. et al. Probing molecular chirality on a sub-femtosecond timescale. Nat. Phys. 11, 654–658 (2015).

    Article  Google Scholar 

  52. Baykusheva, D. & Wörner, H. J. Chiral discrimination through bielliptical high-harmonic spectroscopy. Phys. Rev. X 8, 031060 (2018).

    Google Scholar 

  53. Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

    Article  ADS  Google Scholar 

  54. Comby, A. et al. Relaxation dynamics in photoexcited chiral molecules studied by time-resolved photoelectron circular dichroism: toward chiral femtochemistry. J. Phys. Chem. Lett. 7, 4514–4519 (2016).

    Article  Google Scholar 

  55. Svoboda, V. et al. Femtosecond photoelectron circular dichroism of chemical reactions. Sci. Adv. 8, eabq2811 (2022).

    Article  Google Scholar 

  56. Han, M., Ji, J.-B., Balčiūnas, T., Ueda, K. & Wörner, H. J. Attosecond circular-dichroism chronoscopy of electron vortices. Nat. Phys. 19, 230–236 (2023).

    Google Scholar 

  57. Brennecke, S. & Lein, M. High-order above-threshold ionization beyond the electric dipole approximation. J. Phys. B 51, 094005 (2018).

    Article  ADS  Google Scholar 

  58. Muller, H. G. Numerical simulation of high-order above-threshold-ionization enhancement in argon. Phys. Rev. A 60, 1341 (1999).

    Article  ADS  Google Scholar 

  59. Liang, J. et al. Direct visualization of deforming atomic wavefunction in ultraintense high-frequency laser pulses. Ultrafast Sci. 2022, 9842716 (2022).

    Article  ADS  Google Scholar 

  60. Liao, Y. et al. Reconstruction of attosecond beating by interference of two-photon transitions on the lithium atom with Rabi oscillations. Phys. Rev. A 105, 063110 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Schneider and M. Seiler for their technical support. This work was supported by the National Key Research and Development Program of China (grant no. 2019YFA0308 300), and the National Natural Science Foundation of China (grant nos. 12374264, 12021004, 12074265 and 91950202). M.H. acknowledges the funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 801459 (FP-RESOMUS). This work was supported by ETH Zürich and the Swiss National Science Foundation through projects 200021_172946 and the NCCR-MUST. The computing work in this paper is supported by the Public Service Platform of High Performance Computing provided by Network and Computing Center of Huazhong University of Science and Technology (HUST).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and M.H. conceived the study. M.H. performed the experiments with the support of J.-b.J. and C.S.L. The data were analysed and interpreted by J.L., Y.L., Y.Z., M.H., K.U. and H.J.W. Simulations were implemented by J.L. and Y.L., with the help of W.-C.J. This work was supervised by Y.Z., P.L. and H.J.W. The paper was written by J.L., M.H., Y.Z., K.U. and H.J.W., with the input of all co-authors.

Corresponding authors

Correspondence to Meng Han, Yueming Zhou or Peixiang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Calibration of IR intensity.

Measured photoelectron spectrum as a function of the time delay between the XUV and IR fields without the attosecond phase stability. The white arrow denotes the maximal energy shift, which is employed to determine the IR peak intensity.

Extended Data Fig. 2 Data analysis.

a Measured photoelectron spectra at θ = 70 (blue solid line) and θ = 110 (purple line) for helium ionization by the combination of XUV and IR fields. The dashed line represents the fitted background of the photoelectron spectra. b The photoelectron spectra by subtracting the background from the measured spectra. c The comparison of the spectra and the Gaussian fitting of the peaks (green dashed lines). d-f The Gaussian fitting for the photoelectron spectra with the window width of δE = 0.015 (d), δE = 0.02 (e) and δE = 0.025 (f). The vertical dashed lines in c-f mark the peak positions determined by the Gaussian fitting.

Extended Data Fig. 3 Supplementary experimental data.

a-c Measured time-delay averaged photoelectron spectra for photoionization of helium by the combination of the XUV and IR fields at different angles. d-f The same as a-c but at the different time delays for θ = 70 (blue solid line) and θ = 110 (purple line). The green dashed lines show the Gaussian fitting of the peaks. The vertical dashed lines mark the peak positions determined by the Gaussian fitting.

Extended Data Fig. 4 Measured delay- and angle-resolved photoelectron spectrum.

a Measured delay- and angle-resolved photoelectron spectrum for peak1 (Ek = [10.0, 11.4] eV). b Normalized photoelectron spectrum, \({{{\mathscr{I}}}}(\theta ,\tau ;{E}_{k})={{{\mathscr{M}}}}(\theta ,\tau ;{E}_{k})-\overline{{{{\mathscr{M}}}}}(\theta ;{E}_{k})\), shown in Eq.(6) of the main text. c The asymmetry of the normalized photoelectron spectrum, \({{{\mathscr{I}}}}(\theta ,\tau ;{E}_{k})-{{{\mathscr{I}}}}(\pi -\theta ,\tau ;{E}_{k})\).

Extended Data Fig. 5 Supplementary photoelectron angular distribution and asymmetric distribution.

a Measured delay- and angle-resolved photoelectron spectrum for Ek = [6.7, 8.4] eV. b-d Same as Fig. 4b–d of main text, but for the results of Ek = [6.7, 8.4] eV. e-h Same as a-d, but for the results of Ek = [13.1, 14.8] eV.

Extended Data Fig. 6 TDSE results of the photoelectron energy spectra.

a, Vector potentials of the laser pulses in our calculations. The wavelength and the intensity of the IR field are 800 nm and 5.88 × 1013W/cm2. The centre frequency of XUV pulse is ωXUV=2 a.u., and its intensity is 1 × 1013W/cm2. b c, Photoelectron energy spectra for He ionization obtained by numerically solving TDSE. The blue and red lines are the results for θ = π/4 and θ = 3π/4, respectively. b and c display the results for XUV pulse alone and combination of XUV and IR fields, respectively.

Extended Data Fig. 7 Light-induced electron displacement predicted by nSFA and TDSE.

a Displacement ΔαM(τ) as a function of the time delay between the IR and XUV fields. The intensity and wavelength for the IR field is I = 5.88 × 1013W/cm2 and 800 nm, respectively. The final momentum of the electron is \({p}_{z}=p\sin \theta\) = 1.0 a.u. b The forward-backward momentum shift as a function of the emission angle. c, The forward-backward (θ = 70/110) momentum shift as a function of the time-delay between the XUV and IR pulses. In b and c the photoelectron energy is 11eV. The solid lines are the prediction from nSFA.

Extended Data Fig. 8 Interference picture.

Schematic representation of the interference between the electric dipole and quadrupole transitions. a The sketch of the PDD and PDQ channels. b The sketch of the PDD and PQD channels. The PDD produces photoelectron with partial waves s and d0. The PQD and PDQ channels produce photoelectrons with partial waves p±1 and f±1. Note that in each channel the transition amplitudes for p1 and p−1 are equal. It is the same for f1 and f−1.

Extended Data Fig. 9 Photoionization time delays.

a CC phase of the electric quadrupole CC transitions. The solid line represents the analytical expression of the CC phase as given in Eq.((33)). The markers represents the results obtained by numerical method. The symbols ‘ × ’ and ‘ + ’ represent the CC phase of electric quadrupole transition for final state with the angular momentum of the final state as l = 1 (p) and l = 3 (f), respectively. b Time delays extracted from the oscillation of the asymmetry parameter by considering different interfering paths, as labelled in the legend. c Times delays extracted from the oscillation of the asymmetry parameters (lines with rhombuses) and photoelectron yield (lines with circles). The solid and dashed lines represent the results from TDSE calculations and obtained by the lowest-order perturbation theory, respectively. d Time delay between the electric-dipole and -quadrupole transitions ΔτQ−D as a function of photoelectron energy. The solid and dashed lines represent the results from TDSE calculations and obtained by the lowest-order perturbation theory, respectively. The symbols with the error bar are the experimental results. The error bar represents the 95% confidence level by the sine fitting.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Han, M., Liao, Y. et al. Attosecond-resolved non-dipole photoionization dynamics. Nat. Photon. 18, 311–317 (2024). https://doi.org/10.1038/s41566-023-01349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01349-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing