Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wide-band frequency modulation of a terahertz intrinsic Josephson junction emitter of a cuprate superconductor

Abstract

Communication using terahertz (1012 Hz) electromagnetic waves is critical for developing sixth-generation wireless network infrastructures. Conflictions between stable radiation and frequency modulation of terahertz sources impede the superposing of transmitting signals on carrier waves. The Josephson junctions included in a cuprate superconductor radiate terahertz waves with frequencies proportional to the bias voltages. Thus, the modulation of the bias voltage leads to the modulation of the Josephson plasma emission (JPE) frequency. This study aims to demonstrate the generation of frequency-modulated (FM) terahertz continuous waves from Josephson junctions. A FM bandwidth of up to 40 GHz was achieved when 3 GHz sinusoidal waves were superimposed on 840–890 GHz carrier waves radiated by a JPE. The results verify that the instantaneous JPE frequency follows the gigahertz-modulated bias voltage. The wide-band FM terahertz generation by a monolithic device shows a sharp contrast to the mode-lock frequency comb constructed using highly sophisticated optics on a bench. A further increase of the modulation amplitude facilitates up- or downconversion of frequencies over more than one octave. The obtained FM bandwidth exhibited an improvement of two orders of magnitude in the demodulation signal-to-noise ratio compared with the amplitude-modulated waves. The demonstrated FM JPE stimulates further research on terahertz communication technology and metrology using superconducting devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comb-like spectrum with 3 GHz and 25 dBm modulation and the experimental setup.
Fig. 2: Amplitude and frequency dependence of spectra with microwave bias modulations and basic device properties.
Fig. 3: Centre frequency (mesa voltage) evolution of the spectra.
Fig. 4: Temperature dependence of radiation properties.
Fig. 5: Comparison of 10 kHz and 3 GHz modulations.
Fig. 6: Schematic description of synchronization among the stacked IJJs for high-frequency modulation and low-frequency modulation.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within this Article and its Supplementary Information. Further data are available from the corresponding author upon reasonable request.

References

  1. Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56, 223001 (2023).

    ADS  Google Scholar 

  2. Shurakov, A., Lobanov, Y. & Goltsman, G. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications. Supercond. Sci. Technol. 29, 023001 (2016).

    ADS  Google Scholar 

  3. Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nat. Photonics 7, 702–710 (2013).

    ADS  CAS  Google Scholar 

  4. Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).

    Google Scholar 

  5. Kumar, A. et al. Terahertz topological photonic integrated circuits for 6G and beyond: a perspective. J. Appl. Phys. 132, 140901 (2022).

    ADS  CAS  Google Scholar 

  6. Ishigaki, K. et al. Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes. Electron. Lett. 48, 582–583 (2012).

  7. Webber, J. et al. Multi‐level wireless transmission using resonant tunneling diodes in 300‐GHz band. Electron. Lett. 59, e12731 (2023).

    Google Scholar 

  8. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS  Google Scholar 

  9. Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

    ADS  CAS  PubMed  Google Scholar 

  10. Yurgens, A. A. Intrinsic Josephson junctions: recent developments. Supercond. Sci. Technol. 13, R85–R100 (2000).

    ADS  CAS  Google Scholar 

  11. Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

    ADS  CAS  PubMed  Google Scholar 

  12. Kakeya, I. & Wang, H. Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: a review on recent progress. Supercond. Sci. Technol. 29, 073001 (2016).

    ADS  Google Scholar 

  13. Delfanazari, K., Klemm, R. A., Joyce, H. J., Ritchie, D. A. & Kadowaki, K. Integrated, portable, tunable, and coherent terahertz sources and sensitive detectors based on layered superconductors. Proc. IEEE 108, 721–734 (2020).

    Google Scholar 

  14. Hu, X. & Lin, S.-Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).

    ADS  Google Scholar 

  15. Koyama, T., Matsumoto, H., Machida, M. & Kadowaki, K. In-phase electrodynamics and terahertz wave emission in extended intrinsic Josephson junctions. Phys. Rev. B 79, 104522 (2009).

    ADS  Google Scholar 

  16. Koshelev, A. Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions. Phys. Rev. B 78, 174509 (2008).

    ADS  Google Scholar 

  17. Tsujimoto, M. et al. Broadly tunable subterahertz emission from internal branches of the current–voltage characteristics of superconducting Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. Lett. 108, 107006 (2012).

    ADS  PubMed  Google Scholar 

  18. Benseman, T. M. et al. Tunable terahertz emission from Bi2Sr2CaCu2O8+δ mesa devices. Phys. Rev. B 84, 064523 (2011).

    ADS  Google Scholar 

  19. Kashiwagi, T. et al. A high-Tc intrinsic Josephson junction emitter tunable from 0.5 to 2.4 terahertz. Appl. Phys. Lett. 107, 082601 (2015).

    ADS  Google Scholar 

  20. Borodianskyi, E. A. & Krasnov, V. M. Josephson emission with frequency span 1–11 THz from small Bi2Sr2CaCu2O8+δ mesa structures. Nat. Commun. 8, 1742 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, H. et al. Compact high-Tc superconducting terahertz emitter with tunable frequency from 0.15 to 1 THz. Appl. Sci. 13, 3469 (2023).

    CAS  Google Scholar 

  22. Hao, L. Y. et al. Compact superconducting terahertz source operating in liquid nitrogen. Phys. Rev. Appl. 3, 024006 (2015).

    ADS  CAS  Google Scholar 

  23. Kleiner, R. et al. Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions. Nat. Commun. 12, 6038 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kakeya, I., Hirayama, N., Omukai, Y. & Suzuki, M. Temperature dependence of terahertz emission by an asymmetric intrinsic Josephson junction device. J. Appl. Phys. 117, 043914 (2015).

    ADS  Google Scholar 

  25. Cirillo, M., Pace, S. & Pagano, S. Frequency modulation of fluxon oscillations. Phys. Lett. A 125, 20–24 (1987).

    ADS  Google Scholar 

  26. Cassidy, M. C. et al. Demonstration of an ac Josephson junction laser. Science 355, 939–942 (2017).

    ADS  CAS  PubMed  Google Scholar 

  27. Koshelets, V. P. & Shitov, S. V. Integrated superconducting receivers. Supercond. Sci. Technol. 13, R53–R69 (2000).

    ADS  CAS  Google Scholar 

  28. Uzawa, Y. et al. Superconducting receiver technologies supporting ALMA and future prospects. Radio Sci. 56, e2020RS007157 (2021).

    ADS  Google Scholar 

  29. Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    ADS  Google Scholar 

  30. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photonics 13, 146–157 (2019).

    ADS  Google Scholar 

  31. Elarabi, A., Yoshioka, Y., Tsujimoto, M. & Kakeya, I. Monolithic superconducting emitter of tunable circularly polarized terahertz radiation. Phys. Rev. Appl. 8, 064034 (2017).

    ADS  Google Scholar 

  32. Asai, H. & Kawabata, S. Control of circularly polarized THz wave from intrinsic Josephson junctions by local heating. Appl. Phys. Lett. 110, 132601 (2017).

    ADS  Google Scholar 

  33. Li, M. et al. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8+δ intrinsic Josephson junction stacks in the hot-spot regime. Phys. Rev. B 86, 060505 (2012).

    ADS  Google Scholar 

  34. Tsujimoto, M., Kakeya, I., Kashiwagi, T., Minami, H. & Kadowaki, K. Cavity mode identification for coherent terahertz emission from high-Tc superconductors. Opt. Express 24, 4591–4599 (2016).

    ADS  CAS  PubMed  Google Scholar 

  35. Benseman, T. M. et al. Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays. Appl. Phys. Lett. 103, 022602 (2013).

    ADS  Google Scholar 

  36. Tsujimoto, M. et al. Mutually synchronized macroscopic Josephson oscillations demonstrated by polarization analysis of superconducting terahertz emitters. Phys. Rev. Appl. 13, 051001 (2020).

    ADS  CAS  Google Scholar 

  37. Cattaneo, R., Borodianskyi, E. A., Kalenyuk, A. A. & Krasnov, V. M. Superconducting terahertz sources with 12% power efficiency. Phys. Rev. Appl. 16, L061001 (2021).

    ADS  CAS  Google Scholar 

  38. Yi, L. et al. Ultra-wideband frequency modulated continuous wave photonic radar system for three-dimensional terahertz synthetic aperture radar imaging. J. Lightwave Technol. 40, 6719–6728 (2022).

    ADS  Google Scholar 

  39. Kakeya, I., Hirayama, N., Nakagawa, T., Omukai, Y. & Suzuki, M. Temperature and current dependencies of terahertz emission from stacks of intrinsic Josephson junctions with thin electrodes revealed by a high-resolution FT-IR spectrometer. Physica C Supercond. 491, 11–15 (2013).

    ADS  CAS  Google Scholar 

  40. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photonics 8, 462–467 (2014).

    ADS  CAS  Google Scholar 

  41. Pistore, V. et al. Millimeter wave photonics with terahertz semiconductor lasers. Nat. Commun. 12, 1427 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hiraoka, T., Inose, Y., Arikawa, T., Ito, H. & Tanaka, K. Passive mode-locking and terahertz frequency comb generation in resonant-tunneling-diode oscillator. Nat. Commun. 13, 3740 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saito, Y., Kakeya, I. & Takano, Y. Polarization analysis of terahertz emission from Bi-2212 cross-whisker intrinsic Josephson junction devices and their refractive index. Appl. Phys. Lett. 121, 212601 (2022).

    CAS  Google Scholar 

  44. Tsujimoto, M. et al. Design and characterization of microstrip patch antennas for high-Tc superconducting terahertz emitters. Opt. Express 29, 16980 (2021).

    ADS  CAS  PubMed  Google Scholar 

  45. Nomura, Y. et al. Role of the inner copper oxide plane in interlayer Josephson effects in multilayered cuprate superconductors. Phys. Rev. B 100, 144515 (2019).

    ADS  CAS  Google Scholar 

  46. Koyama, T. & Tachiki, M. IV characteristics of Josephson-coupled layered superconductors with longitudinal plasma excitations. Phys. Rev. B 54, 16183–16191 (1996).

    ADS  CAS  Google Scholar 

  47. Machida, M., Koyama, T. & Tachiki, M. Dynamical breaking of charge neutrality in intrinsic Josephson junctions: common origin for microwave resonant absorptions and multiple-branch structures in the IV characteristics. Phys. Rev. Lett. 83, 4618–4621 (1999).

    ADS  CAS  Google Scholar 

  48. Krasnov, V. et al. Collapse of thermal activation in moderately damped Josephson junctions. Phys. Rev. Lett. 95, 93–96 (2005).

    Google Scholar 

  49. Fenton, J. & Warburton, P. Monte Carlo simulations of thermal fluctuations in moderately damped Josephson junctions: multiple escape and retrapping, switching- and return-current distributions, and hysteresis. Phys. Rev. B 78, 054526 (2008).

    ADS  Google Scholar 

  50. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence Vol. 19 (Springer, 1984).

  51. Mochiku, T. & Kadowaki, K. Growth and properties of Bi2Sr2(Ca,Y)Cu2O8+δ single crystals. Physica C Supercond. 235–240, 523–524 (1994).

    ADS  Google Scholar 

  52. Kashiwagi, T. et al. Geometrical full-wavelength resonance mode generating terahertz waves from a single-crystalline Bi2Sr2CaCu2O8+δ rectangular mesa. J Phys. Soc. Jpn 80, 094709 (2011).

    ADS  Google Scholar 

  53. Irimajiri, Y. et al. Development of a superconducting low-noise 3.1-THz hot electron bolometer receiver. IEEE Trans. Terahertz Sci. Technol. 5, 1154–1159 (2015).

    CAS  Google Scholar 

  54. Kashiwagi, T. et al. High temperature superconductor terahertz emitters: fundamental physics and its applications. Jpn J. Appl. Phys. 51, 010113 (2012).

    ADS  Google Scholar 

  55. Kleiner, R., Wang, H. in Fundamentals and Frontiers of the Josephson Effect Vol. 286 (ed. Tafuri, F.) 367–454 (Springer, 2019); https://doi.org/10.1007/978-3-030-20726-7_10

Download references

Acknowledgements

I.K. thanks S. Dhillon, J. Tignon, Y. Uzawa and Y. Irimajiri for discussions on terahertz spectroscopy. This work was partially conducted at University of Tsukuba and Argonne National Laboratory. G.K. and M.T. express their gratitude to Y. Kaneko for technical assistance with sample fabrication. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant numbers JP20H02606 (to I.K.) and JP19H02540 (to M.T.)) and ISHIZUE 2023 of Kyoto University (to I.K.).

Author information

Authors and Affiliations

Authors

Contributions

I.K. and M.T. conceived and designed the experiments. M.M., R.K. and I.K. performed the measurements, analysed and interpreted the data. M.T. and G.K. designed and fabricated the JPE device. I.K. and M.M. wrote the paper with input from R.K. and M.T. All authors participated in reviewing and revising the manuscript.

Corresponding author

Correspondence to Itsuhiro Kakeya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Kaveh Delfanazari, Vladimir Krasnov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, M., Kobayashi, R., Kuwano, G. et al. Wide-band frequency modulation of a terahertz intrinsic Josephson junction emitter of a cuprate superconductor. Nat. Photon. 18, 267–275 (2024). https://doi.org/10.1038/s41566-023-01348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01348-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing