Skip to main content
Log in

A bis-boron boramino acid PET tracer for brain tumor diagnosis

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 22 March 2024

This article has been updated

Abstract

Purpose

Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure.

Methods

This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging.

Results

Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115–0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement.

Conclusion

This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Liu Z, Chen H, Chen K, Shao Y, Kiesewetter DO, Niu G, et al. Boramino acid as a marker for amino acid transporters. Sci Adv. 2015;1:e1500694.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li Z, Kaiser L, Holzgreve A, Ruf VC, Suchorska B, Wenter V, et al. Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic [18F]FET PET radiomics. Eur J Nucl Med Mol Imag. 2021;48:4415–25.

    Article  CAS  Google Scholar 

  3. Heinzel A, Stock S, Langen K-J, Müller D. Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. Eur J Nucl Med Mol Imag. 2012;39:1089–96.

    Article  Google Scholar 

  4. Harat M, Rakowska J, Harat M, Szylberg T, Furtak J, Miechowicz I, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun. 2023;14:4572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langen K-J, Watts C. Amino acid PET for brain tumours — ready for the clinic? Nat Rev Neurol. 2016;12:375–6.

    Article  PubMed  Google Scholar 

  6. Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, et al. A metabolically stable Boron-Derived Tyrosine serves as a Theranostic Agent for Positron Emission Tomography guided Boron Neutron capture Therapy. Bioconjug Chem. 2019;30:2870–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lan X, Fan K, Cai W. First-in-human study of an (18)F-labeled boramino acid: a new class of PET tracers. Eur J Nucl Med Mol Imaging. 2021;48:3037–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li Z, Kong Z, Chen J, Li J, Li N, Yang Z, et al. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur J Nucl Med Mol Imaging. 2021;48:3113–21.

    Article  CAS  PubMed  Google Scholar 

  9. Kong Z, Li Z, Chen J, Ma W, Wang Y, Yang Z, et al. Larger 18F-fluoroboronotyrosine (FBY) active volume beyond MRI contrast enhancement in diffuse gliomas than in circumscribed brain tumors. EJNMMI Res. 2022;12:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18:170–86.

    Article  PubMed  Google Scholar 

  11. Wen PY, Reardon DA. Progress in glioma diagnosis, classification and treatment. Nat Rev Neurol. 2016;12:69–70.

    Article  CAS  PubMed  Google Scholar 

  12. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma Nat Rev Dis Primers. 2015;1:15017.

    Article  PubMed  Google Scholar 

  13. Havu-Aurén K, Kiiski J, Lehtiö K, Eskola O, Kulvik M, Vuorinen V, et al. Uptake of 4-borono-2-[18 F] fluoro-L-phenylalanine in sporadic and neurofibromatosis 2-related schwannoma and meningioma studied with PET. Eur J Nucl Med Mol Imag. 2007;34:87–94.

    Article  Google Scholar 

  14. Nariai T, Ishiwata K, Kimura Y, Inaji M, Momose T, Yamamoto T, et al. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma. Appl Radiat Isot. 2009;67:348–S50.

    Article  Google Scholar 

  15. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23:1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong Z, Li Z, Chen J, Liu S, Liu D, Li J et al. Metabolic characteristics of [18F]fluoroboronotyrosine (FBY) PET in malignant brain tumors. Nucl Med Biol. 2022;106–7:80–7.

  17. Kong Z, Zhang Y, Liu D, Liu P, Shi Y, Wang Y, et al. Role of traditional CHO PET parameters in distinguishing IDH, TERT and MGMT alterations in primary diffuse gliomas. Ann Nucl Med. 2021;35:493–503.

    Article  CAS  PubMed  Google Scholar 

  18. Chen J, Li C, Hong H, Liu H, Wang C, Xu M, et al. Side chain optimization remarkably enhances the in vivo stability of 18F-labeled glutamine for tumor imaging. Mol Pharm. 2019;16:5035–41.

    Article  CAS  PubMed  Google Scholar 

  19. Wollring MM, Werner J-M, Ceccon G, Lohmann P, Filss CP, Fink GR, et al. Clinical applications and prospects of PET imaging in patients with IDH-mutant gliomas. J Neurooncol. 2023;162:481–8.

    Article  PubMed  Google Scholar 

  20. Rozenblum L, Zaragori T, Tran S, Morales-Martinez A, Taillandier L, Blonski M, et al. Differentiating high-grade glioma progression from treatment-related changes with dynamic [18F]FDOPA PET: a multicentric study. Eur Radiol. 2023;33:2548–60.

    Article  CAS  PubMed  Google Scholar 

  21. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392:432–46.

    Article  PubMed  Google Scholar 

  22. Bi JF, Chowdhry S, Wu SH, Zhang WJ, Masui K, Mischel PS. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer. 2020;20:57–70.

    Article  CAS  PubMed  Google Scholar 

  23. Kim MM, Parolia A, Dunphy MP, Venneti S. Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nat Rev Clin Oncol. 2016;13:725–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010;9:906–20.

    Article  PubMed  Google Scholar 

  25. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med. 1998;39:778–85.

    CAS  PubMed  Google Scholar 

  26. Deuschl C, Kirchner J, Poeppel TD, Schaarschmidt B, Kebir S, El Hindy N, et al. (11)C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging. 2018;45:593–601.

    Article  CAS  PubMed  Google Scholar 

  27. Nodwell MB, Yang H, Čolović M, Yuan Z, Merkens H, Martin RE, et al. 18F-Fluorination of Unactivated C–H bonds in branched aliphatic amino acids: direct synthesis of Oncological Positron Emission Tomography Imaging agents. J Am Chem Soc. 2017;139:3595–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15:341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11 C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81:1049–58.

    Article  CAS  PubMed  Google Scholar 

  30. Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol. 2021;23:881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanaoka K, Watabe T, Naka S, Kanai Y, Ikeda H, Horitsugi G, et al. FBPA PET in boron neutron capture therapy for cancer: prediction of 10B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014;4:70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, et al. Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. J Neurooncol. 2009;91:199–206.

    Article  PubMed  Google Scholar 

  33. Linz U. Boron neutron capture therapy for glioblastoma: is it worth pursuing? Technol Cancer Res Treat. 2008;7:83–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant No. 22225603), Ministry of Science and Technology of the People’s Republic of China (Grant No. 2021YFA1601400), Beijing Municipal Natural Science Foundation (Grant No. Z200018), and Changping Laboratory to Zhibo Liu, Science Foundation of Peking University Cancer Hospital (Grant No. PY202309) to Zhu Li, Beijing Municipal Natural Science Foundation (Grant No.7232351), Special Research Fund for Central Universities, and Peking Union Medical College (Grant No. 3332022024), and National Natural Science Foundation of China (Grant No. 32301152) to Ziren Kong, and the National High Level Hospital Clinical Research Funding(Grant No. 2022-PUMCH-A-019) to Yu Wang. We thank the facility support from the Analytical Instrumentation Center of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

Zhibo Liu and Yu Wang conceived the study; Junyi Chen performed material synthesis, characterization and chemical analysis; Zhu Li, Junyi Chen and Yixin Shi assisted by Mengxin Xu performed most of the experiments; Nan Li, Wenbin Ma, Bo-Shuai Mu and Zhi Yang provided technical assistance and suggestions. Yu Wang, Zhi Yang, Ziren Kong and Zhibo Liu analysed the data. Ziren Kong, Junyi Chen and Zhibo Liu wrote the manuscript with input from all authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yu Wang or Zhibo Liu.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki, approved by the Institutional Review Board of the Peking University Cancer Hospital (ID 2021KT38), and registered at clinicaltrials.gov (NCT05987098). Written informed consent was obtained from all participants.

Competing Interests

Junyi Chen, Mengxin Xu, and Zhibo Liu are consultants of Boomray Pharmaceuticals (Beijing) Co., Ltd. No other potential conflicts of interest relevant to this article exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors regret that the version of Figure 3 that appears in the original published article is incorrect. The correct and incorrect versions of the figure is provided in the erratum article.

The original article has been corrected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, J., Kong, Z. et al. A bis-boron boramino acid PET tracer for brain tumor diagnosis. Eur J Nucl Med Mol Imaging 51, 1703–1712 (2024). https://doi.org/10.1007/s00259-024-06600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-024-06600-5

Keywords

Navigation