Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Understanding neural circuit function through synaptic engineering

Abstract

Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering — the synthetic insertion of new synaptic connections into in vivo neural circuits — is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure–function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct features of synaptic engineering.
Fig. 2: Connexin-based engineered electrical synapses.
Fig. 3: Luciferase–channelrhodopsin-based engineered optical synapses.
Fig. 4: Engineered neuropeptide signalling.

Similar content being viewed by others

References

  1. Hammond, C. & Esclapez, M. in Cellular and Molecular Neurophysiology 4th edn, Ch. 6 (Academic, 2015).

  2. Vaughn, M. J. & Haas, J. S. On the diverse functions of electrical synapses. Front. Cell. Neurosci. 16, 910015 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. van den Pol, A. N. Neuropeptide transmission in brain circuits. Neuron 76, 98–115 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rabinowitch, I. & Schafer, W. R. Engineering new synaptic connections in the C. elegans connectome. Worm 4, e992668 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, I. W., Papagiakoumou, E. & Emiliani, V. Towards circuit optogenetics. Curr. Opin. Neurobiol. 50, 179–189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shibata, A. C. E. et al. Photoactivatable CaMKII induces synaptic plasticity in single synapses. Nat. Commun. 12, 751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergs, A. C. F. et al. All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nat. Commun. 14, 1939 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19, 554–556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Motz, C. T., Kabat, V., Saxena, T., Bellamkonda, R. V. & Zhu, C. Neuromechanobiology: an expanding field driven by the force of greater focus. Adv. Healthc. Mater. 10, 2100102 (2021).

    Article  CAS  Google Scholar 

  13. Hassan, B. A. & Hiesinger, P. R. Beyond molecular codes: simple rules to wire complex brains. Cell 163, 285–291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Rabinowitch, I., Chatzigeorgiou, M., Zhao, B., Treinin, M. & Schafer, W. R. Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans. Nat. Commun. 5, 4442 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Ransey, E. et al. Long-term precision editing of neural circuits in mammals using engineered gap junction hemichannels. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457429 (2023).

  17. Porta-de-la-Riva, M. et al. Neural engineering with photons as synaptic transmitters. Nat. Methods 20, 761–769 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Prakash, M. et al. Selective control of synaptically-connected circuit elements by all-optical synapses. Commun. Biol. 5, 33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hawk, J. D., Wisdom, E. M., Sengupta, T., Kashlan, Z. D. & Colón-Ramos, D. A. A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo. Nat. Commun. 12, 4795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ngo, H. B. et al. A chemogenetic tool that enables functional neural circuit analysis. Cell Rep. 32, 108139 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Beyer, E. C. & Berthoud, V. M. Gap junction gene and protein families: connexins, innexins, and pannexins. Biochim. Biophys. Acta Biomembr. 1860, 5–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Skerrett, I. M. & Williams, J. B. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev. Neurobiol. 77, 522–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Rabinowitch, I., Chatzigeorgiou, M. & Schafer, W. R. A gap junction circuit enhances processing of coincident mechanosensory inputs. Curr. Biol. 23, 963–967 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi, U., Wang, H., Hu, M., Kim, S. & Sieburth, D. Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair. Proc. Natl Acad. Sci. USA 118, e2022599118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rabinowitch, I. et al. Neuropeptide-driven cross-modal plasticity following sensory loss in Caenorhabditis elegans. PLoS Biol. 14, e1002348 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hawk, J. D. et al. Integration of plasticity mechanisms within a single sensory neuron of C. elegans actuates a memory. Neuron 97, 356–367.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, M. K., Liu, H., Wu, T., Yang, W. & Zhang, Y. NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nat. Commun. 11, 3467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng, L. & Yan, D. NLR-1/CASPR anchors F-actin to promote gap junction formation. Dev. Cell 55, 574–587.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pechuk, V. et al. Reprogramming the topology of the nociceptive circuit in C. elegans reshapes sexual behavior. Curr. Biol. 32, 4372–4385.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rabinowitch, I. et al. Circumventing neural damage in a C. elegans chemosensory circuit using genetically engineered synapses. Cell Syst. 12, 263–271.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Almoril-Porras, A. et al. Specific configurations of electrical synapses filter sensory information to drive choices in behavior. Preprint at bioRxiv https://doi.org/10.1101/2023.08.01.551556 (2023).

  34. Deisseroth, K. & Hegemann, P. The form and function of channelrhodopsin. Science 357, eaan5544 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Govorunova, E. G., Sineshchekov, O. A., Li, H., Janz, R. & Spudich, J. L. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J. Biol. Chem. 288, 29911–29922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Broser, M. et al. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 11, 5682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palombo, R. et al. Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nat. Commun. 13, 6652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berglund, K., Fernandez, A. M., Gutekunst, C. A. N., Hochgeschwender, U. & Gross, R. E. Step-function luminopsins for bimodal prolonged neuromodulation. J. Neurosci. Res. 98, 422–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Wilson, T. & Woodland Hastings, J. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Syed, A. J. & Anderson, J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 50, 5668–5705 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagai, T. & Hattori, M. Tiny but bright. Nat. Rev. Chem. 6, 522–523 (2022).

    Article  PubMed  Google Scholar 

  46. England, C. G., Ehlerding, E. B. & Cai, W. NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27, 1175–1187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suzuki, K. et al. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat. Commun. 7, 13718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitiouchkina, T. et al. Plants with genetically encoded autoluminescence. Nat. Biotechnol. 38, 944–946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bargmann, C. I. Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34, 458–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Findeisen, M., Rathmann, D. & Beck-Sickinger, A. G. RFamide peptides: structure, function, mechanisms and pharmaceutical potential. Pharmaceuticals 4, 1248–1280 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  51. Carafoli, E. & Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291, 20849–20857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Connors, B. W. Synchrony and so much more: diverse roles for electrical synapses in neural circuits. Dev. Neurobiol. 77, 610–624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goodman, M. B., Hall, D. H., Avery, L. & Lockery, S. R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller, A. C. & Pereda, A. E. The electrical synapse: molecular complexities at the gap and beyond. Dev. Neurobiol. 77, 562–574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Phelan, P. et al. Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system. Curr. Biol. 18, 1955–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghosh, D. D. et al. Neural architecture of hunger-dependent multisensory decision making in C. elegans. Neuron 92, 1049–1062 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morales-Curiel, L. F. et al. Volumetric imaging of fast cellular dynamics with deep learning enhanced bioluminescence microscopy. Commun. Biol. 5, 1330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cabré, G. et al. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat. Commun. 10, 907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature 591, 105–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Moyle, M. W. et al. Structural and developmental principles of neuropil assembly in C. elegans. Nature 591, 99–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ripoll-Sánchez, L. et al. The neuropeptidergic connectome of C. elegans. Neuron 111, 3570–3589.e5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schmitt, C., Schultheis, C., Husson, S. J., Liewald, J. F. & Gottschalk, A. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS ONE 7, e43164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aoki, W. et al. Cellomics approach for high-throughput functional annotation of Caenorhabditis elegans neural network. Sci. Rep. 8, 10380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Davis, L. et al. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. eLife 10, e67075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sáez, J. C., Retamal, M. A., Basilio, D., Bukauskas, F. F. & Bennett, M. V. L. Connexin-based gap junction hemichannels: gating mechanisms. Biochim. Biophys. Acta Biomembr. 1711, 215–224 (2005).

    Article  Google Scholar 

  67. Emes, R. D. & Grant, S. G. N. Evolution of synapse complexity and diversity. Annu. Rev. Neurosci. 35, 111–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Hale, W. D., Südhof, T. C. & Huganir, R. L. Engineered adhesion molecules drive synapse organization. Proc. Natl Acad. Sci. USA 120, e2215905120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burlingham, S. R. et al. Induction of synapse formation by de novo neurotransmitter synthesis. Nat. Commun. 13, 3060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pirri, J. K., Rayes, D. & Alkema, M. J. A change in the ion selectivity of ligand-gated ion channels provides a mechanism to switch behavior. PLoS Biol. 13, e1002238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hashimshony, T., Feder, M., Levin, M., Hall, B. K. & Yanai, I. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature 519, 219–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Amin, J., Ananthan, J. & Voellmy, R. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kallunki, T., Barisic, M., Jäättelä, M. & Liu, B. How to choose the right inducible gene expression system for mammalian studies? Cells 8, 796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prozzillo, Y. et al. Targeted protein degradation tools: overview and future perspectives. Biology 9, 421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mishra, D. et al. An engineered protein-phosphorylation toggle network with implications for endogenous network discovery. Science 373, eaav0780 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Rabinowitch, I. What would a synthetic connectome look like? Phys. Life Rev. https://doi.org/10.1016/j.plrev.2019.06.005 (2019).

    Article  PubMed  Google Scholar 

  77. Palacios-Prado, N. & Bukauskas, F. F. Modulation of metabolic communication through gap junction channels by transjunctional voltage; synergistic and antagonistic effects of gating and ionophoresis. Biochim. Biophys. Acta 1818, 1884–1894 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Plahar, H. A. et al. BioParts — a biological parts search portal and updates to the ICE parts registry software platform. ACS Synth. Biol. 10, 2649–2660 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Rabinowitch, I. Synthetic biology in the brain: a vision of organic robots. In Proc. ALIFE 2019: the 2019 Conference on Artificial Life 654–655 (MIT Press, 2019).

  80. Kukhtar, D. & Fussenegger, M. Synthetic biology in multicellular organisms: opportunities in nematodes. Biotechnol. Bioeng. 120, 2056–2071 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Rabinowitch, I. Inserting new synaptic connections into damaged neural circuits: towards synapse therapy? Neural Regen. Res. 17, 300–301 (2022).

    Article  PubMed  Google Scholar 

  82. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I.R. received financial support from the Israel Science Foundation (grant 1465/20). Research in the D.A.C.-R. laboratory was supported by grants from NIH (R01NS076558), the National Science Foundation (NSF IOS 1353845) and DP1NS111778 and by an HHMI Scholar Award. M.K. acknowledges financial support from the ERC (MechanoSystems, 715243), HFSP (CDA00023/2018), MCIN/ AEI/10.13039/501100011033/ FEDER ‘A way to make Europe’, PID2021-123812OB-I00, ‘Severo Ochoa’ program for Centres of Excellence in R&D (CEX2019-000910-S), Fundació Privada Cellex, Fundació Mir-Puig and Generalitat de Catalunya through the CERCA and Research program.

Author information

Authors and Affiliations

Authors

Contributions

The authors all contributed to all aspects of the article preparation.

Corresponding author

Correspondence to Ithai Rabinowitch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks J. Dittman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinowitch, I., Colón-Ramos, D.A. & Krieg, M. Understanding neural circuit function through synaptic engineering. Nat. Rev. Neurosci. 25, 131–139 (2024). https://doi.org/10.1038/s41583-023-00777-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00777-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing