Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Electrical conductivities and mechanical properties of porous cellulose nanofiber/reduced graphene oxide composites prepared with postreduction processes

Abstract

Graphene-based conductive porous materials have been employed in various applications, such as sensors, energy devices, and magnetic shielding materials. Herein, we prepared porous cellulose nanofiber (CNF)/graphene composites with a two-step preparation strategy: fabrication of the porous CNF/graphene oxide (GO) precursors and postreduction of the GO to reduced GO (rGO). The porous precursors were prepared via freeze-drying to obtain honeycomb-like pore structures, and the GO was highly dispersed owing to its high affinity for CNFs. Thermal reduction of the CNF/GO precursor was performed at <150 °C for 48 h, resulting in a porous CNF/rGO composite with an electrical conductivity of 1.96 × 10−4 S/m at 10 wt% GO owing to the electrically conductive paths in the rGO. Furthermore, the mechanical properties of the porous composites were characterized via compressive stress measurements. In addition, we demonstrated another postreduction method, i.e., chemical vapor reduction of CNF/GO with trimethylamine borane, which was completed within 30 min and provided a porous CNF/rGO composite with excellent conductivity (1.39 × 10−3 S/m).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Yuan X, Zhang S, Wang J, Huang Q, Yu N, et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019;11:12.

    Article  ADS  Google Scholar 

  2. Tao Y, Sui Z-Y, Han B-H. Advanced porous graphene materials: from in- plane pore generation to energy storage applications. J Mater Chem A. 2020;8:6125–43.

    Article  CAS  Google Scholar 

  3. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3d monolithic conductive sponges. ACS Appl Mater Interfaces. 2019;11:6685–704.

    Article  CAS  PubMed  Google Scholar 

  4. Pai AR, Azeez NP, Thankan B, Gopakumar N, Jaroszewski M, Paoloni C, et al. Recent progress in electromagnetic interference shielding performance of porous polymer nanocomposites—a review. Energies. 2022;15:3901.

    Article  CAS  Google Scholar 

  5. Irin F, Das S, Atore FO, Green MJ. Ultralow percolation threshold in aerogel and cryogel templated composites. Langmuir. 2013;29:11449–56.

    Article  CAS  PubMed  Google Scholar 

  6. Hu H, Zhao Z, Zhang R, Bin Y, Qiu J. Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. J Mater Chem A. 2014;2:3756–60.

    Article  CAS  Google Scholar 

  7. Wang Z, Shen X, Han NM, Liu X, Wu Y, Ye W, et al. Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem Mater. 2016;28:6731–41.

    Article  CAS  Google Scholar 

  8. Han NM, Wang Z, Shen X, Wu Y, Liu X, Zheng Q, et al. Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites. ACS Appl Mater Interfaces. 2018;10:6580–92.

    Article  CAS  PubMed  Google Scholar 

  9. Sun Z, Fang S, Hu YH. 3D graphene materials: from understanding to design and synthesis control. Chem Rev. 2020;120:10336–453.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Guan L-Z, Zhao L, Wan Y-J, Tang L-C. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale. 2018;10:14788–811.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Samad YA, Polychronopoulou K, Alhassan SM, Liao K. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges. Sci Rep. 2014;4:4652.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Parviz D, Shah SA, Odom MGB, Sun W, Lutkenhaus JL, Green MJ. Tailored network formation in graphene oxide gels. Langmuir. 2018;34:8550–9.

    Article  CAS  PubMed  Google Scholar 

  13. Shen X, Wang Z, Wu Y, Liu X, He Y-B, Zheng Q, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater Horiz. 2018;5:275–84.

    Article  CAS  Google Scholar 

  14. Liu Z, Shen D, Yu J, Dai W, Li C, Du S, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv. 2016;6:22364–9.

    Article  ADS  CAS  Google Scholar 

  15. Wang M, Duan X, Xu Y, Duan X. Functional three-dimensional graphene/polymer composites. ACS Nano. 2016;10:7231–47.

    Article  CAS  PubMed  Google Scholar 

  16. Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano. 2015;9:8933–41.

    Article  CAS  PubMed  Google Scholar 

  17. Sun R, Chen H, Li Q, Song Q, Zhang X. Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage. Nanoscale. 2014;6:12912–20.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Isogai A. Cellulose nanofibers: recent progress and future prospects. J Fiber Sci Technol. 2020;76:310–26.

    Article  Google Scholar 

  19. Hosseini H, Kokabi M, Mousaavi SM. BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer. 2018;137:82–96.

    Article  CAS  Google Scholar 

  20. Chen Y, Pötschke P, Pionteck J, Voit B, Qi H. Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl Mater Interfaces. 2020;12:22088–98.

    Article  CAS  PubMed  Google Scholar 

  21. Singh RK, Kumr R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 2016;6:64993–5011.

    Article  ADS  CAS  Google Scholar 

  22. Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8:323–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–14.

    Article  CAS  PubMed  Google Scholar 

  24. Tu C, Nagata K, Yan S. Dependence o electrical conductivity on phase morphology for graphene selectively located at the nterface of polypropylene/polyethylene composites. Nanomater. 2022;12:509–20.

    Article  CAS  Google Scholar 

  25. Pan Z-Z, Nishihara H, Iwamura S, Sekiguchi T, Sato A, Isogai A, et al. Cellulose nanofiber as a distinct structure- directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano. 2016;10:10689–97.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Yang S, Fan D, Li G, Wang S. Dual-enhanced hydrophobic and mechanical properties of long- range 3d anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing. ACS Sustain Chem Eng. 2019;7:12878–86.

    Article  CAS  Google Scholar 

  27. Lipatov A, Guinel MJ-F, Muratov DS, Vanyushin VO, Wilson PM, Kolmakov A, et al. Low-temperature thermal reduction of graphene oxide: in situ correlative structural, thermal desorption, and electrical transport measurements. Appl Phys Lett. 2018;122:053103.

    Article  ADS  Google Scholar 

  28. Morimoto N, Kubo T, Nishina Y. Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications. Sci Rep. 2016;6:21715.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Li H, Zhang L, Du C, Fang T, Hu J. Direct reduction of graphene oxide/nanofibrillated cellulose composite film and its electrical conductivity research. Sci Rep. 2020;10:3124.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chua CK, Pumera M. Reduction of graphene oxide with substituted borohydrides. J Mater Chem A. 2013;1:1892.

    Article  CAS  Google Scholar 

  31. Pham VH, Hur SH, Kim EJ, Kim BS, Chung JS. Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun. 2013;49:6665–7.

    Article  CAS  Google Scholar 

  32. Takashima Y, Sato Y, Tsuruoka T, Akamatsu K. Controlled syntheses of Ag nanoparticles inside MOFs by using amine–borans as vapour phase reductants. Dalton Trans. 2020;49:17169–72.

    Article  CAS  PubMed  Google Scholar 

  33. Martins TB, Miwa RH, Silva AJR, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett. 2007;98:196803–7.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tatematsu Foundation and JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (23K13558). The FESEM and TEM observations and XPS measurements were performed at the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology. The authors thank Dr. Yoko Sakurai for performing FESEM observations, Ms. Atsuko Mori for performing TEM observations, and Mr. Yukihisa Moriguchi and Ms. Yoko Yamazaki for performing XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Eguchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, H., Hayashi, H. & Nagata, K. Electrical conductivities and mechanical properties of porous cellulose nanofiber/reduced graphene oxide composites prepared with postreduction processes. Polym J 56, 185–192 (2024). https://doi.org/10.1038/s41428-023-00861-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00861-x

Search

Quick links