Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sleep and circadian rhythmicity as entangled processes serving homeostasis

Abstract

Sleep is considered essential for the brain and body. A predominant concept is that sleep is regulated by circadian rhythmicity and sleep homeostasis, processes that were posited to be functionally and mechanistically separate. Here we review and re-evaluate this concept and its assumptions using findings from recent human and rodent studies. Alterations in genes that are central to circadian rhythmicity affect not only sleep timing but also putative markers of sleep homeostasis such as electroencephalogram slow-wave activity (SWA). Perturbations of sleep change the rhythmicity in the expression of core clock genes in tissues outside the central clock. The dynamics of recovery from sleep loss vary across sleep variables: SWA and immediate early genes show an early response, but the recovery of non-rapid eye movement and rapid eye movement sleep follows slower time courses. Changes in the expression of many genes in response to sleep perturbations outlast the effects on SWA and time spent asleep. These findings are difficult to reconcile with the notion that circadian- and sleep–wake-driven processes are mutually independent and that the dynamics of sleep homeostasis are reflected in a single variable. Further understanding of how both sleep and circadian rhythmicity contribute to the homeostasis of essential physiological variables may benefit from the assessment of multiple sleep and molecular variables over longer time scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenomenology of sleep.
Fig. 2: Responses to sleep loss: different dynamics for REM sleep, NREM sleep and SWA.
Fig. 3: Generation of circadian rhythmicity.
Fig. 4: Modelling sleep–wake-driven and circadian-driven aspects of sleep–wake regulation.
Fig. 5: Clock genes and their variants affect aspects of sleep regulation.
Fig. 6: Effect of circadian clock and sleep–wake history on rhythmic transcription varies across genes.

Similar content being viewed by others

Data availability

The example graphs depicted in Figs. 1 and 2 are based on the publicly accessible data resource https://bxd.vital-it.ch/, published first in ref. 39 and then as a digital research object describing the analyses pipe-line and links to data and analyses scripts98. Simulations of the sleep–wake-driven process in the mouse (Fig. 4b,d) were performed using parameters and methods described in ref. 99 and illustrated in Fig. 4a, on data from ref. 100.

References

  1. Girardeau, G. & Lopes-Dos-Santos, V. Brain neural patterns and the memory function of sleep. Science 374, 560–564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank, M. G. & Heller, H. C. The function(s) of sleep. Handb. Exp. Pharmacol. 253, 3–34 (2019). A very accessible and comprehensive review of current thinking and evidence concerning the functions of sleep.

    Article  CAS  PubMed  Google Scholar 

  3. Hertenstein, E., Benz, F., Schneider, C. & Baglioni, C. Insomnia—a risk factor for mental disorders. J. Sleep. Res. 22, e13930 (2023).

    Article  Google Scholar 

  4. Wu, T. T. et al. Insomnia and multiple health outcomes: umbrella review of meta-analyses of prospective cohort studies. Public. Health 215, 66–74 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Koronowski, K. B. & Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science 371, eabd0951 (2021). This review highlights the concept of ‘circadian homeostasis’ by putting the network of circadian circuitries present in various tissues into a homeostatic context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hastings, M. H., Maywood, E. S. & Brancaccio, M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology 8, 13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tu, B. P. & McKnight, S. L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7, 696–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R183 (1984). This paper provides a quantitative exploration of how the interaction between sleep homeostasis and circadian rhythmicity explains a broad range of sleep phenomena.

    CAS  PubMed  Google Scholar 

  9. Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    CAS  PubMed  Google Scholar 

  10. Edgar, D. M., Dement, W. C. & Fuller, C. A. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J. Neurosci. 13, 1065–1079 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shafer, O. T. & Keene, A. C. The regulation of Drosophila sleep. Curr. Biol. 31, R38–R49 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Chiu, C. N. & Prober, D. A. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front. Neural Circuits 7, 58 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krueger, J. M., Nguyen, J. T., Dykstra-Aiello, C. J. & Taishi, P. Local sleep. Sleep. Med. Rev. 43, 14–21 (2019).

    Article  PubMed  Google Scholar 

  14. Noya, S. B. et al. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366, eaav2642 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Delorme, J. et al. Hippocampal neurons’ cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc. Natl Acad. Sci. USA 118, e2108534118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellesi, M., de Vivo, L., Tononi, G. & Cirelli, C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol. 13, 66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zepelin, H. S. & Tobler, I. in Principles and Practise of Sleep Medicine, 4th edition (ed. Roth Kryger, D.) Ch. 8, 91–100 (Elsevier Saunders, 2005).

  18. Barbato, G., Barker, C., Bender, C. & Wehr, T. A. Spontaneous sleep interruptions during extended nights. Relationships with NREM and REM sleep phases and effects on REM sleep regulation. Clin. Neurophysiol. 113, 892–900 (2002).

    Article  PubMed  Google Scholar 

  19. Simor, P., van der Wijk, G., Nobili, L. & Peigneux, P. The microstructure of REM sleep: why phasic and tonic. Sleep. Med. Rev. 52, 101305 (2020).

    Article  PubMed  Google Scholar 

  20. Stephan, A. M., Lecci, S., Cataldi, J. & Siclari, F. Conscious experiences and high-density EEG patterns predicting subjective sleep depth. Curr. Biol. 31, 5487–5500.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Osorio-Forero, A. et al. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 31, 5009–5023.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Lecci, S. et al. Electroencephalographic changes associated with subjective under- and overestimation of sleep duration. Sleep 43, zsaa094 (2020).

    Article  PubMed  Google Scholar 

  23. Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience 114, 1047–1060 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Davis, C. J., Clinton, J. M., Jewett, K. A., Zielinski, M. R. & Krueger, J. M. Delta wave power: an independent sleep phenotype or epiphenomenon? J. Clin. Sleep. Med. 7, S16–S18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, D. et al. Slow wave sleep in patients with respiratory failure. Sleep. Med. 12, 378–383 (2011).

    Article  PubMed  Google Scholar 

  26. Aeschbach, D., Dijk, D. J., Trachsel, L., Brunner, D. P. & Borbely, A. A. Dynamics of slow-wave activity and spindle frequency activity in the human sleep EEG: effect of midazolam and zopiclone. Neuropsychopharmacology 11, 237–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Franken, P., Dijk, D. J., Tobler, I. & Borbely, A. A. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 261, R198–R208 (1991).

    CAS  PubMed  Google Scholar 

  28. Achermann, P., Dijk, D. J., Brunner, D. P. & Borbely, A. A. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res. Bull. 31, 97–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, C. W., Guillaumin, M. C., McKillop, L. E., Achermann, P. & Vyazovskiy, V. V. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 9, e54148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Franken, P., Tobler, I. & Borbely, A. A. Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci. Lett. 130, 141–144 (1991). This paper provides a quantitative account of how the distribution of sleep and wakefulness drives the time course of slow wave activity in the rat.

    Article  CAS  PubMed  Google Scholar 

  31. Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rusterholz, T., Durr, R. & Achermann, P. Inter-individual differences in the dynamics of sleep homeostasis. Sleep 33, 491–498 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huber, R., Tononi, G. & Cirelli, C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30, 129–139 (2007).

    Article  PubMed  Google Scholar 

  34. Vassalli, A. & Franken, P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc. Natl Acad. Sci. USA 114, E5464–E5473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dijk, D. J., Brunner, D. P. & Borbely, A. A. Time course of EEG power density during long sleep in humans. Am. J. Physiol. 258, R650–R661 (1990).

    CAS  PubMed  Google Scholar 

  36. Hubbard, J. et al. Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat. Commun. 11, 3130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenthal, L., Merlotti, L., Roehrs, T. A. & Roth, T. Enforced 24-hour recovery following sleep deprivation. Sleep 14, 448–453 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Franken, P., Malafosse, A. & Tafti, M. Genetic determinants of sleep regulation in inbred mice. Sleep 22, 155–169 (1999).

    CAS  PubMed  Google Scholar 

  39. Diessler, S. et al. A systems genetics resource and analysis of sleep regulation in the mouse. PLoS Biol. 16, e2005750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCarthy, A. et al. REM sleep homeostasis in the absence of REM sleep: effects of antidepressants. Neuropharmacology 108, 415–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Amici, R. et al. Cold exposure and sleep in the rat: REM sleep homeostasis and body size. Sleep 31, 708–715 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Skorucak, J., Arbon, E. L., Dijk, D. J. & Achermann, P. Response to chronic sleep restriction, extension, and subsequent total sleep deprivation in humans: adaptation or preserved sleep homeostasis? Sleep https://doi.org/10.1093/sleep/zsy078 (2018).

  43. Endo, T. et al. Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am. J. Physiol. 274, R1186–R1194 (1998).

    CAS  PubMed  Google Scholar 

  44. Trachsel, L., Edgar, D. M., Seidel, W. F., Heller, H. C. & Dement, W. C. Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res. 589, 253–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Borbely, A. A., Baumann, F., Brandeis, D., Strauch, I. & Lehmann, D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–495 (1981).

    Article  CAS  PubMed  Google Scholar 

  46. Dijk, D. J. & Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538 (1995). This paper provides analyses of a forced desynchrony protocol that demonstrates that many aspects of sleep are influenced by both sleep-dependent and circadian processes, but to a different extent, and that the processes interact.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franken, P. Long-term vs. short-term processes regulating REM sleep. J. Sleep. Res. 11, 17–28 (2002).

    Article  PubMed  Google Scholar 

  48. Park, S. H. & Weber, F. Neural and homeostatic regulation of REM sleep. Front. Psychol. 11, 1662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ocampo-Garces, A., Bassi, A., Brunetti, E., Estrada, J. & Vivaldi, E. A. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat. Sleep 43, zsaa023 (2020).

    Article  PubMed  Google Scholar 

  50. Park, S. H. et al. A probabilistic model for the ultradian timing of REM sleep in mice. PLoS Comput. Biol. 17, e1009316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barbato, G. & Wehr, T. A. Homeostatic regulation of REM sleep in humans during extended sleep. Sleep 21, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Dijk, D. J., Beersma, D. G. & Daan, S. EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J. Biol. Rhythm. 2, 207–219 (1987).

    Article  CAS  Google Scholar 

  53. Werth, E., Dijk, D. J., Achermann, P. & Borbely, A. A. Dynamics of the sleep EEG after an early evening nap: experimental data and simulations. Am. J. Physiol. 271, R501–R510 (1996).

    CAS  PubMed  Google Scholar 

  54. Vyazovskiy, V. V., Achermann, P. & Tobler, I. Sleep homeostasis in the rat in the light and dark period. Brain Res. Bull. 74, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Huber, R., Deboer, T. & Tobler, I. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res. 857, 8–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Achermann, P. & Borbely, A. A. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).

    Article  PubMed  Google Scholar 

  58. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Lazar, A. S., Lazar, Z. I. & Dijk, D. J. Circadian regulation of slow waves in human sleep: topographical aspects. Neuroimage 116, 123–134 (2015).

    Article  PubMed  Google Scholar 

  61. Yasenkov, R. & Deboer, T. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat. Neuroscience 180, 212–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Mistlberger, R. E. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res. Brain Res. Rev. 49, 429–454 (2005).

    Article  PubMed  Google Scholar 

  63. Maywood, E. S., Chesham, J. E., Winsky-Sommerer, R. & Hastings, M. H. Restoring the molecular clockwork within the suprachiasmatic hypothalamus of an otherwise clockless mouse enables circadian phasing and stabilization of sleep-wake cycles and reverses memory deficits. J. Neurosci. 41, 8562–8576 (2021). This paper demonstrates that restoring rhythmicity in the SCN through local genetic complementation restores rhythmicity in sleep and wakefulness, REM sleep and slow wave activity, indicating the predominant role of the SCN in driving rhythms in sleep–wake behaviour, even in the absence of peripheral clocks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wisor, J. P. et al. A role for cryptochromes in sleep regulation. BMC Neurosci. 3, 20 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Laposky, A. et al. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28, 395–409 (2005).

    Article  PubMed  Google Scholar 

  66. Yu, X. et al. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr. Biol. 24, 2838–2844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ehlen, J. C. et al. Bmal1 function in skeletal muscle regulates sleep. eLife 6, e26557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, W. et al. Desynchronizing the sleep–wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat. Protoc. 18, 579–603 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Cambras, T. et al. Circadian desynchronization of core body temperature and sleep stages in the rat. Proc. Natl Acad. Sci. USA 104, 7634–7639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maywood, E. S., Chesham, J. E., Winsky-Sommerer, R., Smyllie, N. J. & Hastings, M. H. Circadian chimeric mice reveal an interplay between the suprachiasmatic nucleus and local brain clocks in the control of sleep and memory. Front. Neurosci. 15, 639281 (2021). This paper provides an analysis of sleep–wake characteristics and response to sleep loss and sleep-dependent memory in mice in which the period of peripheral clocks is different from the SCN and demonstrates a contribution of peripheral clocks despite the dominant role of the SCN.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dijk, D. J., Duffy, J. F., Riel, E., Shanahan, T. L. & Czeisler, C. A. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J. Physiol. 516, 611–627 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Akerstedt, T. & Gillberg, M. The circadian variation of experimentally displaced sleep. Sleep 4, 159–169 (1981).

    Article  CAS  PubMed  Google Scholar 

  73. Czeisler, C. A., Weitzman, E., Moore-Ede, M. C., Zimmerman, J. C. & Knauer, R. S. Human sleep: its duration and organization depend on its circadian phase. Science 210, 1264–1267 (1980).

    Article  CAS  PubMed  Google Scholar 

  74. Dijk, D. J., Shanahan, T. L., Duffy, J. F., Ronda, J. M. & Czeisler, C. A. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. J. Physiol. 505, 851–858 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Munch, M., Silva, E. J., Ronda, J. M., Czeisler, C. A. & Duffy, J. F. EEG sleep spectra in older adults across all circadian phases during NREM sleep. Sleep 33, 389–401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Curie, T. et al. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311–323 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chang, A. M. et al. Circadian gene variants influence sleep and the sleep electroencephalogram in humans. Chronobiol. Int. 33, 561–573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duffy, J. F. & Dijk, D. J. Getting through to circadian oscillators: why use constant routines. J. Biol. Rhythm. 17, 4–13 (2002).

    Article  Google Scholar 

  80. Sela, Y., Hoekstra, M. M. & Franken, P. Sub-minute prediction of brain temperature based on sleep-wake state in the mouse. eLife 10, e62073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Franken, P., Tobler, I. & Borbely, A. A. Sleep and waking have a major effect on the 24-hr rhythm of cortical temperature in the rat. J. Biol. Rhythm. 7, 341–352 (1992).

    Article  CAS  Google Scholar 

  82. Masubuchi, S. et al. Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats. Eur. J. Neurosci. 12, 4206–4214 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Abe, H., Honma, S., Namihira, M., Masubuchi, S. & Honma, K. Behavioural rhythm splitting in the CS mouse is related to clock gene expression outside the suprachiasmatic nucleus. Eur. J. Neurosci. 14, 1121–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Wakamatsu, H. et al. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13, 1190–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Dudley, C. A. et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 379–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Le Minh, N., Damiola, F., Tronche, F., Schutz, G. & Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hoekstra, M. M., Jan, M., Katsioudi, G., Emmenegger, Y. & Franken, P. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2. eLife 10, e69773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hor, C. N. et al. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc. Natl Acad. Sci. USA 116, 25773–25783 (2019). This paper describes multiday time course analyses of gene expression and chromatin accessibility in the mouse cortex, quantifying the sleep–wake-driven and circadian contributions to gene expression dynamics. The study discovered a surprisingly long effect of sleep loss on clock gene rhythms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Archer, S. N. et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc. Natl Acad. Sci. USA 111, E682–E691 (2014). This study used a forced desynchrony protocol and showed that the appropriate circadian timing of sleep makes an important contribution to the rhythmic changes in gene expression in the human blood transcriptome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schibler, U. et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223–232 (2015). This article reviews the signalling pathways by which the SCN synchronizes circadian rhythms in peripheral organs.

    Article  PubMed  Google Scholar 

  91. Curie, T., Maret, S., Emmenegger, Y. & Franken, P. In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. Sleep 38, 1381–1394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Deboer, T., Vansteensel, M. J., Detari, L. & Meijer, J. H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 6, 1086–1090 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Deboer, T., Detari, L. & Meijer, J. H. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30, 257–262 (2007).

    Article  PubMed  Google Scholar 

  94. Moller-Levet, C. S. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl Acad. Sci. USA 110, E1132–E1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maret, S. et al. Homer1a is a core brain molecular correlate of sleep loss. Proc. Natl Acad. Sci. USA 104, 20090–20095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Archer, S. N. & Oster, H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J. Sleep. Res. 24, 476–493 (2015).

    Article  PubMed  Google Scholar 

  97. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. Proc. Natl Acad. Sci. USA 109, 2625–2629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jan, M., Gobet, N., Diessler, S., Franken, P. & Xenarios, I. A multi-omics digital research object for the genetics of sleep regulation. Sci. Data 6, 258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Franken, P. et al. NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc. Natl Acad. Sci. USA 103, 7118–7123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mang, G. M. & Franken, P. Genetic dissection of sleep homeostasis. Curr. Top. Behav. Neurosci. 25, 25–63 (2015).

    Article  PubMed  Google Scholar 

  101. Franken, P. A role for clock genes in sleep homeostasis. Curr. Opin. Neurobiol. 23, 864–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Skeldon, A. C., Dijk, D. J. & Derks, G. Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model. PLoS ONE 9, e103877 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dijk, D. J. & Skeldon, A. in Principles and Practice of Sleep Medicine, Seventh Edition (ed. Roth Kryger, G. D.) 390–406 (Elsevier, 2022).

  104. Naylor, E. et al. The circadian clock mutation alters sleep homeostasis in the mouse. J. Neurosci. 20, 8138–8143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kopp, C., Albrecht, U., Zheng, B. & Tobler, I. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16, 1099–1106 (2002).

    Article  PubMed  Google Scholar 

  106. Hasan, S., van der Veen, D. R., Winsky-Sommerer, R., Dijk, D. J. & Archer, S. N. Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1821–R1830 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Hasan, S. et al. A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J. 28, 2441–2454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 17, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Franken, P., Lopez-Molina, L., Marcacci, L., Schibler, U. & Tafti, M. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J. Neurosci. 20, 617–625 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. He, Y. et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325, 866–870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mang, G. M. et al. Altered sleep homeostasis in rev-erbalpha knockout mice. Sleep 39, 589–601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gizowski, C. & Bourque, C. W. The neural basis of homeostatic and anticipatory thirst. Nat. Rev. Nephrol. 14, 11–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Gizowski, C., Zaelzer, C. & Bourque, C. W. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537, 685–688 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Borbély, A. A. in Functional States of the Brain: Their Determinants (eds. Koukou, M., Lehmann D. & Angst, J.) 151–161 (Elsevier, 1980).

  115. Borbely, A. The two-process model of sleep regulation: deginnings and outlook. J. Sleep. Res. 31, e13598 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014). This article provides a comprehensive review of the evidence that sleep serves synaptic homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Benington, J. H. & Heller, H. C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. DiNuzzo, M. & Nedergaard, M. Brain energetics during the sleep-wake cycle. Curr. Opin. Neurobiol. 47, 65–72 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nakao, M., McGinty, D., Szymusiak, R. & Yamamoto, M. Thermoregulatory model of sleep control: losing the heat memory. J. Biol. Rhythm. 14, 547–556 (1999).

    Article  CAS  Google Scholar 

  120. Harding, E. C., Franks, N. P. & Wisden, W. Sleep and thermoregulation. Curr. Opin. Physiol. 15, 7–13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Alfonsa, H. et al. Intracellular chloride regulation mediates local sleep pressure in the cortex. Nat. Neurosci. 26, 64–78 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science 370, 50–56 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication and some of the research highlighted by P.F. was supported by the Swiss National Science Foundation (grants CRSII3_136201, 31003A_173182, 310030B_192805 and 310030_214847) and the State of Vaud, Switzerland. Research by D.-J.D. is supported by the UK Dementia Research Institute, which receives its funding from DRI Ltd, the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. The authors thank S. Archer for comments on the manuscript, and A. C. Skeldon for preparing Fig. 4c.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of the manuscript.

Corresponding authors

Correspondence to Paul Franken or Derk-Jan Dijk.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Chiara Cirelli, Marcos Frank and Frank Scheer for their contribution to the peer review of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franken, P., Dijk, DJ. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat. Rev. Neurosci. 25, 43–59 (2024). https://doi.org/10.1038/s41583-023-00764-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00764-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing