Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human neuronal maturation comes of age: cellular mechanisms and species differences

Abstract

The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuronal development and maturation across species.
Fig. 2: Cell-intrinsic and cell-extrinsic mechanisms of neuronal maturation.
Fig. 3: Mechanisms that contribute to evolutionary differences in neuronal maturation rates.
Fig. 4: The flow of neuronal maturation.

Similar content being viewed by others

References

  1. Anderson, V., Spencer-Smith, M. & Wood, A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134, 2197–2221 (2011).

    Article  PubMed  Google Scholar 

  2. Duker, A., Jackson, A. & Bober, M. B. in GeneReviews (eds. Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK575926/ (Univ. Washington, 2021).

  3. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, D. J., Bhaduri, A., Sestan, N. & Kriegstein, A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr. Opin. Neurobiol. 56, 117–124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Espinós, A., Fernández-Ortuño, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev. Neurobiol. 82, 428–453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vaid, S. & Huttner, W. B. Progenitor-based cell biological aspects of neocortex development and evolution. Front. Cell Dev. Biol. 10, 892922 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Libé-Philippot, B. & Vanderhaeghen, P. Cellular and molecular mechanisms linking human cortical development and evolution. Annu. Rev. Genet. 55, 555–581 (2021).

    Article  PubMed  Google Scholar 

  8. Koo, B., Lee, K. H., Ming, G. L., Yoon, K. J. & Song, H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin. Cell Dev. Biol. 142, 43–53 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gould, S. J. Ontogeny and Phylogeny (Harvard Univ. Press, 1977).

  11. Otis, E. M. & Brent, R. Equivalent ages in mouse and human embryos. Anat. Rec. 120, 33–63 (1954).

    Article  CAS  PubMed  Google Scholar 

  12. Van den Ameele, J., Tiberi, L., Vanderhaeghen, P. & Espuny-Camacho, I. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci. 37, 334–342 (2014).

    Article  PubMed  Google Scholar 

  13. Ueda, S. et al. Sequence of molecular events during the maturation of the developing mouse prefrontal cortex. Mol. Neuropsychiatry 1, 94–104 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012). Quantification of myelination across human and chimpanzee development reveals dramatically delayed and prolonged myelination in humans from infancy to adulthood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson, J. L. & Nelson, A. J. Middle childhood and modern human origins. Hum. Nat. 22, 249–280 (2011).

    Article  PubMed  Google Scholar 

  17. Davignon, R. W., Parker, R. M. & Hendrickx, A. G. Staging of the early embryonic brain in the baboon (Papio cynocephalus) and rhesus monkey (Macaca mulatta). Anat. Embryol. 159, 317–334 (1980).

    Article  CAS  Google Scholar 

  18. O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos: Including a Revision of Streeter’s ‘Horizons’ and a Survey of the Carnegie Collection (Carnegie Institution of Washington, 1987).

  19. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018). This RNA-seq atlas of primate brain development shows that divergence in gene expression between human and rhesus macaque is highest in the midfetal and adolescence periods and prominently involves synaptic and myelination genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan, Y. et al. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series. BMC Bioinform. 12, 347 (2011).

    Article  Google Scholar 

  21. Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e28 (2022). Single-cell transcriptomics atlas that profiles the entire period of human cortical development, from gestation to adulthood, shows cell-type-specific maturation patterns.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, S. et al. Vision-dependent specification of cell types and function in the developing cortex. Cell 185, 311–327.e24 (2022). This mouse study provides a mechanistic example of the role of interactions between cell-extrinsic factors (vision-evoked activity) and cell-intrinsic factors (gene expression) in promoting cell-type-specific maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cossart, R. The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function. Curr. Opin. Neurobiol. 21, 160–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573–586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maroof, A. M. et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suresh, H. et al. Comparative single-cell transcriptomic analysis of primate brains highlights human-specific regulatory evolution. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02186-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 600, 274–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalmbach, B. E. et al. Signature morpho-electric, transcriptomic, and dendritic properties of human layer 5 neocortical pyramidal neurons. Neuron 109, 2914–2927.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Barry, C. et al. Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Dev. Biol. 423, 101–110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986 (2019). HPSC-CExNs transplanted into the mouse cortex exhibit slower development of morphological and electrophysiological properties than their mouse counterparts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marchetto, M. C. et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8, e37527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Bardy, C. et al. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21, 1573–1588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moore, A. R., Zhou, W.-L., Jakovcevski, I., Zecevic, N. & Antic, S. D. Spontaneous electrical activity in the human fetal cortex in vitro. J. Neurosci. 31, 2391–2398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tien, N.-W. & Kerschensteiner, D. Homeostatic plasticity in neural development. Neural Dev. 13, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bar-Shira, O., Maor, R. & Chechik, G. Gene expression switching of receptor subunits in human brain development. PLoS Comput. Biol. 11, e1004559 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Somel, M. et al. Transcriptional neoteny in the human brain. Proc. Natl Acad. Sci. USA 106, 5743–5748 (2009). A comparative transcriptomics study that demonstrates delayed postnatal expression of neurodevelopmental genes in humans compared with chimpanzee and rhesus macaque.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358, 1027–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allaway, K. C. et al. Genetic and epigenetic coordination of cortical interneuron development. Nature 597, 693–697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Azim, E., Shnider, S. J., Cederquist, G. Y., Shivraj Sohur, U. & Macklis, J. D. Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb. Cortex 19, 62–69 (2009).

    Article  Google Scholar 

  50. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klingler, E. et al. Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599, 453–457 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Poulopoulos, A. et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565, 356–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, X. et al. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res. 22, 611–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, L. et al. A cross-species proteomic map reveals neoteny of human synapse development. Nature 622, 112–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Ghosh, R. P. & Meyer, B. J. Spatial organization of chromatin: emergence of chromatin structure during development. Annu. Rev. Cell Dev. Biol. 37, 199–232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Closser, M. et al. An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. Neuron 110, 70–85.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Keough, K. C. et al. Three-dimensional genome rewiring in loci with human accelerated regions. Science 380, eabm1696 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Stergachis, A. B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hickey, S. L., Berto, S. & Konopka, G. Chromatin decondensation by FOXP2 promotes human neuron maturation and expression of neurodevelopmental disease genes. Cell Rep. 27, 1699–1711.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pease, N. A. et al. Tunable, division-independent control of gene activation timing by a Polycomb switch. Cell Rep. 34, 108888 (2021). An epigenetic switch in T cells regulates the onset of gene activation via the competing actions of histone methyltransferase and demethylase activity to control H3K27me3 levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chory, E. J. et al. Nucleosome turnover regulates histone methylation patterns over the genome. Mol. Cell 73, 61–72.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Ciceri, G. et al. An epigenetic barrier sets the timing of human neuronal maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.06.02.490114 (2022). Chemical inhibition or CRISPRi knockdown of key chromatin modifiers in either NPCs or postmitotic hPSC-CExNs can accelerate aspects of neuronal maturation.

  72. Hergenreder, E. et al. Combined small molecule treatment accelerates timing of maturation in human pluripotent stem cell-derived neurons. Nat. Biotech. (in the press). Using a screening approach, the authors identify a set of factors, including inhibitors of chromatin modifiers and activators of calcium-dependent transcription, that accelerate maturation of hPSC-CExNs and other cell types.

  73. Mätlik, K., Govek, E.-E., Paul, M. R., Allis, C. D. & Hatten, M. E. Histone bivalency regulates the timing of cerebellar granule cell development. Genes Dev. 37, 570–589 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Macrae, T. A., Fothergill-Robinson, J. & Ramalho-Santos, M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat. Rev. Mol. Cell Biol. 24, 6–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, J. U. et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 14, 1345–1351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Su, Y. et al. Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat. Neurosci. 20, 476–483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitazawa, T. et al. A unique bipartite Polycomb signature regulates stimulus-response transcription during development. Nat. Genet. 53, 379–391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, Y., Liu, M.-L., Zang, T. & Zhang, C.-L. Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Front. Mol. Neurosci. 10, 359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cornacchia, D. & Studer, L. Back and forth in time: directing age in iPSC-derived lineages. Brain Res. 1656, 14–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Mertens, J. et al. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell 28, 1533–1548.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miyazawa, H. & Aulehla, A. Revisiting the role of metabolism during development. Development 145, dev131110 (2018).

    Article  PubMed  Google Scholar 

  82. Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5, e13374 (2016). This mouse study documents the metabolic changes in glycolysis and OXPHOS pathways that occur during neuronal differentiation and maturation.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Knaus, L. S. et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival. Cell 186, 1950–1967.e25 (2023). Perturbing an essential amino acid transporter involved in metabolic shifts in early postnatal development disrupts neuronal excitability and survival in mCExNs and provides a mechanistic explanation for a known genetic cause of human autism.

    Article  CAS  PubMed  Google Scholar 

  84. Iwata, R., Casimir, P. & Vanderhaeghen, P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369, 858–862 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Iwata, R. Temporal differences of neurodevelopment processes between species. Neurosci. Res. 177, 8–15 (2022).

    Article  PubMed  Google Scholar 

  86. Iwata, R. et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 379, eabn4705 (2023). A comparison of mouse and human neurons reveals prolonged mitochondrial development in hPSC-CExNs, and increasing mitochondrial tricarboxylic acid and OXPHOS pathways in hPSC-CExNs accelerates maturation.

    Article  CAS  PubMed  Google Scholar 

  87. Hock, M. B. & Kralli, A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 71, 177–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D. & Conklin-Brittain, N. The raw and the stolen. Cooking and the ecology of human origins. Curr. Anthropol. 40, 567–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Faria-pereira, A., Temido-ferreira, M. & Morais, V. A. BrainPhys neuronal media support physiological function of mitochondria in mouse primary neuronal cultures. Front. Mol. Neurosci. 15, 837448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arjun McKinney, A., Petrova, R. & Panagiotakos, G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 149, dev198853 (2022). The authors review the functions of calcium signalling in early development and dysfunctions in neurodevelopmental disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hurni, N. et al. Transient cell-intrinsic activity regulates the migration and laminar positioning of cortical projection neurons. Cereb. Cortex 27, 3052–3063 (2017).

    Article  PubMed  Google Scholar 

  97. Bortone, D. & Polleux, F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62, 53–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Komuro, Y. et al. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Dev. Neurobiol. 75, 369–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Rosenberg, S. S. & Spitzer, N. C. Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, a004259 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stroud, H. et al. An activity-mediated transition in transcription in early postnatal neurons. Neuron 107, 874–890.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yap, E. L. & Greenberg, M. E. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100, 330–348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moore, A. R. et al. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb. Cortex 19, 1795–1805 (2009).

    Article  PubMed  Google Scholar 

  103. Moore, A. R. et al. Connexin hemichannels contribute to spontaneous electrical activity in the human fetal cortex. Proc. Natl Acad. Sci. USA 111, E3919–E3928 (2014). Together with Moore et al. (2009) and Moore et al. (2011), this study is one of the first to characterize neuronal electrophysiology in the human fetal cortex, showing that subplate neurons mature first and early correlated activity is controlled by connexin hemichannels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peinado, A., Yuste, R. & Katz, L. C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10, 103–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Elias, L. A. B. & Kriegstein, A. R. Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci. 31, 243–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Munz, M. et al. Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell 186, 1930–1949.e31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Molnár, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020). The authors review the prenatal development of cortical electrophysiological properties and circuits with a focus on humans.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ozair, M. Z. et al. hPSC modeling reveals that fate selection of cortical deep projection neurons occurs in the subplate. Cell Stem Cell 23, 60–73.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Hoerder-Suabedissen, A. & Molnár, Z. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16, 133–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, H. et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79, 970–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Antón-bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 990, 987–990 (2019).

    Article  Google Scholar 

  113. Luhmann, H. J., Kanold, P. O., Molnár, Z. & Vanhatalo, S. Early brain activity: translations between bedside and laboratory. Prog. Neurobiol. 213, 102268 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wong Fong Sang, I. E. et al. Optogenetically controlled activity pattern determines survival rate of developing neocortical neurons. Int. J. Mol. Sci. 22, 6575 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wong, F. K. & Marín, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Biol. 35, 523–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Rakic, S. & Zecevic, N. Programmed cell death in the developing human telencephalon. Eur. J. Neurosci. 12, 2721–2734 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Ataman, B. et al. Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539, 242–247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Meijer, M. et al. A single-cell model for synaptic transmission and plasticity in human iPSC-derived neurons. Cell Rep. 27, 2199–2211.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 13, 4403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xiang, Y. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487–497.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fligor, C. M. et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep. 16, 2228–2241 (2021).

    Article  CAS  Google Scholar 

  128. Berto, S. et al. Accelerated evolution of oligodendrocytes in the human brain. Proc. Natl Acad. Sci. USA 116, 24334–24342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baldwin, K. T. & Eroglu, C. Molecular mechanisms of astrocyte-induced synaptogenesis. Curr. Opin. Neurobiol. 45, 113–120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Banker, G. A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809–810 (1980).

    Article  CAS  PubMed  Google Scholar 

  131. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Tang, X. et al. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res. 11, 743–757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Gan, K. J. & Südhof, T. C. Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc. Natl Acad. Sci. USA 116, 12524–12533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Risher, W. C. et al. Astrocytes refine cortical connectivity at dendritic spines. eLife 3, e04047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Irala, D. et al. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Preprint at bioRxiv https://doi.org/10.1101/2023.04.03.535448 (2023).

  138. Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J. & Pasqualea, E. B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl Acad. Sci. USA 106, 12524–12529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hama, H., Hara, C., Yamaguchi, K. & Miyawaki, A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41, 405–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Chung, W.-S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Falcone, C. et al. Cortical interlaminar astrocytes across the therian mammal radiation. J. Comp. Neurol. 527, 1654–1674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Falcone, C. et al. Redefining varicose projection astrocytes in primates. Glia 70, 145–154 (2022).

    Article  PubMed  Google Scholar 

  144. Allen, D. E. et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 376, 1441–1446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lischka, F. W. et al. Neonatal mouse cortical but not isogenic human astrocyte feeder layers enhance the functional maturation of induced pluripotent stem cell-derived neurons in culture. Glia 66, 725–748 (2018).

    Article  PubMed  Google Scholar 

  146. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron 107, 436–453.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hasel, P. et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 8, 15132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Berryer, M. H. et al. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 12, e80168 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Padmashri, R. et al. Modeling human-specific interlaminar astrocytes in the mouse cerebral cortex. J. Comp. Neurol. 529, 802–810 (2021).

    Article  PubMed  Google Scholar 

  151. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Menassa, D. A. et al. The spatiotemporal dynamics of microglia across the human lifespan. Dev. Cell 57, 2127–2139.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tremblay, M.-È., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wallace, J., Lord, J., Dissing-Olesen, L., Stevens, B. & Murthy, V. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife 9, e50531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Eyo, U. & Molofsky, A. V. Defining microglial-synapse interactions. Science 381, 1155–1156 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Schafer, D. P., Lehrman, E. K. & Stevens, B. The ‘quad-partite’ synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61, 24–36 (2013).

    Article  PubMed  Google Scholar 

  158. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Marin, I. A. et al. The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex. Proc. Natl Acad. Sci. USA 119, e2203965119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

    Article  Google Scholar 

  165. Baum, M. L. et al. CUB and Sushi multiple domains 1 (CSMD1) opposes the complement cascade in neural tissues. Cold Spring Harb. Lab. https://doi.org/10.1101/2020.09.11.291427v1 (2020).

  166. Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 34, 523–544 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Weinhard, L. et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nguyen, P. T. et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182, 388–403.e15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Popova, G. et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28, 2153–2166.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Sabate-Soler, S. et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 70, 1267–1288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Huang, W. et al. Origins and proliferative states of human oligodendrocyte precursor cells. Cell 182, 594–608.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fletcher, J. L., Makowiecki, K., Cullen, C. L. & Young, K. M. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin. Cell Dev. Biol. 118, 14–23 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Nishiyama, A., Shimizu, T., Sherafat, A. & Richardson, W. D. Life-long oligodendrocyte development and plasticity. Semin. Cell Dev. Biol. 116, 25–37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yakovlev, P. L. & Lecours, A. R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–70 (Blackwell Science, 1967).

  181. Bürgel, U. et al. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29, 1092–1105 (2006).

    Article  PubMed  Google Scholar 

  182. Zonouzi, M. et al. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 27, 2799–2808.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bonetto, G., Belin, D. & Káradóttir, R. T. Myelin: a gatekeeper of activity-dependent circuit plasticity? Science 374, eaba6905 (2021).

    Article  PubMed  Google Scholar 

  184. Scholz, J., Klein, M. C., Behrens, T. E. J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. García-León, J. A. et al. SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Rep. 10, 655–672 (2018).

    Article  Google Scholar 

  187. Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22, 484–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shaker, M. R. et al. Rapid and efficient generation of myelinating human oligodendrocytes in organoids. Front. Cell. Neurosci. 15, 631548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Giamanco, K. A. & Matthews, R. T. Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 218, 367–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Geissler, M. et al. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J. Neurosci. 33, 7742–7755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Omar, M. H. et al. CNS neurons deposit laminin α5 to stabilize synapses. Cell Rep. 21, 1281–1292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dityatev, A., Schachner, M. & Sonderegger, P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Genestine, M. et al. Vascular-derived SPARC and SerpinE1 regulate interneuron tangential migration and accelerate functional maturation of human stem cell-derived interneurons. eLife 10, e56063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Long, K. R. & Huttner, W. B. How the extracellular matrix shapes neural development. Open Biol. 9, 180216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Ibáñez, C. F. & Andressoo, J.-O. Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiol. Dis. 97, 80–89 (2017).

    Article  PubMed  Google Scholar 

  197. Long, K. R. & Huttner, W. B. The role of the extracellular matrix in neural progenitor cell proliferation and cortical folding during human neocortex development. Front. Cell. Neurosci. 15, 804649 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Sood, D. et al. Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci. Rep. 9, 17874 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Song, I. & Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136, 101–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Hyysalo, A. et al. Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. Stem Cell Res. 24, 118–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Zhang, Z. N. et al. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl Acad. Sci. USA 113, 3185–3190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hartmann, J. et al. Alginate‐laminin hydrogel supports long‐term neuronal activity in 3D human induced pluripotent stem cell‐derived neuronal networks. Adv. Mater. Interfaces 10, 2200580 (2022).

    Article  Google Scholar 

  203. Álvarez, Z. et al. Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons. Cell Stem Cell 30, 219–238.e14 (2023). Manipulating ECM physical properties in vitro accelerates neuronal maturation in hPSC-CExNs.

    Article  PubMed  Google Scholar 

  204. Goyal, M. S., Hawrylycz, M., Miller, J. A., Snyder, A. Z. & Raichle, M. E. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab. 19, 49–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bogin, B. Evolutionary hypotheses for human childhood. Yearb. Phys. Anthropol. 40, 63–89 (1997).

    Article  Google Scholar 

  206. Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450–1455 (2020). One of the first studies, to our knowledge, conducted in the PSM system to connect timing differences in human and mouse cells with biochemical reaction speeds, including transcription delays and protein turnover.

    Article  CAS  PubMed  Google Scholar 

  208. Rayon, T. et al. Species-specific pace of development is associated with differences in protein stability. Science 369, eaba7667 (2020). One of the first studies, to our knowledge, in spinal motor neurons to connect timing differences in human and mouse cells with biochemical reaction speeds, focusing on protein degradation rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Heusner, A. A. Body size and energy metabolism. Annu. Rev. Nutr. 5, 267–293 (1985).

    Article  CAS  PubMed  Google Scholar 

  211. Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023). A higher mass-specific metabolic rate in mouse PSM cells is correlated with higher cytosolic NAD+ to NADH ratios, and manipulating this ratio in human PSM alters protein translation rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell 30, 938–949.e7 (2023). Stem cell models of PSM development across four mammalian species in addition to human and mouse show that biochemical reaction rates but not metabolic rates are correlated with developmental timing.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Nguyen, P., Pease, N. A. & Kueh, H. Y. Scalable control of developmental timetables by epigenetic switching networks. J. R. Soc. Interface 18, 20210109 (2021). A series of mathematical models describe how epigenetic regulators could control developmental timing and be modified by evolutionary changes.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Buontempo, S. et al. EZH2-mediated H3K27me3 targets transcriptional circuits of neuronal differentiation. Front. Neurosci. 16, 814144 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ramesh, V., Liu, F., Minto, M. S., Chan, U. & West, A. E. Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics. eLife 12, e86273 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Pereira, J. D. et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl Acad. Sci. USA 107, 15957–15962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Wu, Q. et al. Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nat. Commun. 13, 470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012). The human-specific duplicated gene SRGAP2C inhibits SRGAP2A activity, delaying dendritic spine maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Schmidt, E. R. E., Kupferman, J. V., Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Sci. Rep. 9, 18692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Libe-Philippot, B. et al. Human synaptic neoteny requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition. Preprint at bioRxiv https://doi.org/10.1101/2023.03.01.530630 (2023).

  224. Assendorp, N. et al. CTNND2 moderates neuronal excitation and links human evolution to prolonged synaptic development in the neocortex. Preprint at bioRxiv https://doi.org/10.1101/2022.09.13.507776 (2022).

  225. Schmidt, E. R. E. et al. A human-specific modifier of cortical connectivity and circuit function. Nature 599, 640–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Linker, S. B. et al. Human-specific regulation of neural maturation identified by cross-primate transcriptomics. Curr. Biol. 32, 4797–4807.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hill, M. S., Vande Zande, P. & Wittkopp, P. J. Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22, 203–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Chen, Y. et al. A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nat. Methods 18, 528–541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Walker, M. L. & Herndon, J. G. Menopause in nonhuman primates? Biol. Reprod. 79, 398–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Brust, V., Schindler, P. M. & Lewejohann, L. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Front. Zool. 12, S17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rakic, P. Timing of major ontogenetic events in the visual cortex of the rhesus monkey. UCLA Forum Med. Sci. 18, 3–40 (1975).

    Google Scholar 

  234. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2015).

    Article  Google Scholar 

  235. Schmechel, D. E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 115–152 (1979).

    Article  CAS  Google Scholar 

  236. Ge, W.-P., Miyawaki, A., Gage, F. H., Jan, Y. N. & Jan, L. Y. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Sanai, N. et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478, 382–386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kim, J.-Y. & Paredes, M. F. Implications of extended inhibitory neuron development. Int. J. Mol. Sci. 22, 5113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Huttenlocher, P. R. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 163, 195–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  240. Bourgeois, J. P., Goldman-Rakic, P. S. & Rakic, P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb. Cortex 4, 78–96 (1994).

    Article  CAS  PubMed  Google Scholar 

  241. Kroon, T., van Hugte, E., van Linge, L., Mansvelder, H. D. & Meredith, R. M. Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex. Sci. Rep. 9, 5037 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rakic, P., Bourgeois, J.-P. & Goldman-Rakic, P. S. in Progress in Brain Research (eds Van Pelt, J. et al.) 227–243 (Elsevier, 1994).

  243. Shapiro, L. P., Parsons, R. G., Koleske, A. J. & Gourley, S. L. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: implications for cortical development. J. Neurosci. Res. 95, 1123–1143 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Duerksen, K., Barlow, W. E. & Stasior, O. G. Fused eyelids in premature infants. Ophthal. Plast. Reconstr. Surg. 10, 234–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  245. West, S. & Williams, C. Amblyopia in children (aged 7 years or less). BMJ Clin. Evid. 2016, 0709 (2016).

    PubMed  PubMed Central  Google Scholar 

  246. Harwerth, R. S., Smith, E. L. III, Duncan, G. C., Crawford, M. L. & von Noorden, G. K. Multiple sensitive periods in the development of the primate visual system. Science 232, 235–238 (1986).

    Article  CAS  PubMed  Google Scholar 

  247. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl Acad. Sci. USA 117, 23242–23251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179–195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Pincus, M. et al. Chronic psychosocial stress and experimental pubertal delay affect socioemotional behavior and amygdala functional connectivity in adolescent female rhesus macaques. Psychoneuroendocrinology 127, 105154 (2021).

    Article  CAS  PubMed  Google Scholar 

  250. Pattwell, S. S. et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat. Commun. 7, 11475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Stevenson, N. J. et al. Functional maturation in preterm infants measured by serial recording of cortical activity. Sci. Rep. 7, 12969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhou, Z. et al. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging. Science 380, 376–381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article  PubMed Central  Google Scholar 

  255. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  256. Borghese, L. et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cell 28, 955–964 (2010).

    Article  CAS  Google Scholar 

  257. Qi, Y. et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 35, 154–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kemp, P. J. et al. Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA. J. Physiol. 594, 6583–6594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bocchi, R., Masserdotti, G. & Götz, M. Direct neuronal reprogramming: fast forward from new concepts toward therapeutic approaches. Neuron 110, 366–393 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lin, H.-C. et al. NGN2 induces diverse neuron types from human pluripotency. Stem Cell Rep. 16, 2118–2127 (2021).

    Article  CAS  Google Scholar 

  262. Nehme, R. et al. Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Rep. 23, 2509–2523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022). More advanced maturation phenotypes are demonstrated in organoids transplanted in mice versus those maintained in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27‐supplemented neurobasalTM, a new serum‐free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  PubMed  Google Scholar 

  267. Brewer, G. J. & Cotman, C. W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74 (1989).

    Article  CAS  PubMed  Google Scholar 

  268. Bardy, C. et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl Acad. Sci. USA 112, E3312 (2015).

    Article  Google Scholar 

  269. Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Bledi, Y., Domb, A. J. & Linial, M. Culturing neuronal cells on surfaces coated by a novel polyethyleneimine-based polymer. Brain Res. Brain Res. Protoc. 5, 282–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  271. Hyvärinen, T. et al. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. Sci. Rep. 9, 17125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Sozzi, E. et al. Silk scaffolding drives self-assembly of functional and mature human brain organoids. Front. Cell Dev. Biol. 10, 1023279 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  274. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Pham, M. T. et al. Generation of human vascularized brain organoids. Neuroreport 29, 588–593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Johnson, M. A., Weick, J. P., Pearce, R. A. & Zhang, S.-C. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J. Neurosci. 27, 3069–3077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Gao, Y. et al. Multimodal analysis of neuronal maturation in the developing primate prefrontal cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.06.02.543460 (2023).

  278. Werner, J. M. & Gillis, J. Preservation of co-expression defines the primary tissue fidelity of human neural organoids. Preprint at bioRxiv https://doi.org/10.1101/2023.03.31.535112 (2023).

  279. Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Pollen, A. A., Kilik, U., Lowe, C. B. & Camp, J. G. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat. Rev. Genet. 24, 687–711 (2023).

    Article  CAS  PubMed  Google Scholar 

  281. Müller, J. et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab. Chip 15, 2767–2780 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge C. Chen, S. Nolbrant, B. Pavlovic and A. Sousa for helpful discussions and comments on the manuscript and funding from the following funding sources: Jane Coffin Childs (J.L.W.), Schmidt Science Fellows (J.L.W.), US National Institutes of Health DP2MH122400-01 (A.A.P.) and Schmidt Futures Foundation (A.A.P.). A.A.P. is a New York Stem Cell Foundation Robertson Investigator.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. J.L.W. wrote the article.

Corresponding authors

Correspondence to Jenelle L. Wallace or Alex A. Pollen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Activity-regulated genes

Genes whose expression levels are regulated by levels or patterns of neuronal activity. These include a first wave of early response genes (also known as immediate early genes) and a second wave of late response genes.

Bivalent promoters

Promoters whose surrounding histones bear both active H3K4me2/3 (di- or trimethylation of histone 3 lysine 4) and repressive H3K27me3 (trimethylation of histone 3 lysine 27) marks, thought to prepare the expression of genes that are turned on at later developmental timepoints.

Cell-extrinsic factors

Factors that originate externally to a cell (components of the environment) and that influence the properties or responses of the cell.

Cell-intrinsic factors

Factors that originate from within a cell and are preserved even when the cell is removed from its native environment.

Chromatin

A complex found in the nucleus of a cell that comprises DNA and associated proteins that organize, package and regulate DNA replication and gene expression.

cis-regulatory mechanisms

Mechanisms in which cis-regulatory elements control the expression of individual genes nearby on the chromosome.

Cortical plate

Term for nascent cortical layers II–VI during embryonic development before the laminar cytoarchitecture becomes distinct.

Enhancers

Genomic elements distal to gene promoters that regulate gene expression levels and/or probability; an example of cis-regulatory elements.

Glycolysis

A metabolic pathway that takes place in the cytoplasm in which cells produce ATP and lactate/pyruvate, which may be processed further by oxidative phosphorylation. This pathway is less efficient for ATP production than oxidative phosphorylation.

Heterochrony

Evolutionary changes in developmental timing.

Histone modifications

Chemical alterations (including acetylation and methylation) of the amino acids in histone proteins, which regulate gene expression and chromatin compaction.

Multimodal methods

Methods for cellular characterization that combine two or more methods from different categories (for example, molecular, structural, functional and metabolic).

Neotenous

Exhibits retention of juvenile characteristics in a sexually mature adult.

Neuronal maturation

The process by which postmitotic neurons undergo molecular, metabolic, morphological and functional changes; engage in cellular interactions (including the establishment of synaptic connectivity and myelination); and achieve a steady-state phenotype in the adult brain.

Nucleosomes

Protein complexes that each contain eight histones, around which DNA is coiled.

Oxidative phosphorylation

(OXPHOS). A metabolic pathway that takes place in mitochondria in which cells use products of glucose metabolism and oxygen to produce energy in the form of ATP.

Subplate

A transient layer of neurons located between the proliferative zone and the cortical plate. The subplate mostly disappears before birth, owing to cell migration and apoptosis, and the remaining cells become layer VIb neurons.

Topologically associating domains

(TADs). Units of genome organization in which there are higher levels of chromatin interaction internally than externally, demarcating boundaries of looping interactions between enhancers and promoters.

Transcription factors

Proteins that bind to DNA at enhancers and/or promoters to regulate gene expression; an example of trans-regulation.

trans-regulatory mechanisms

Mechanisms in which trans-regulatory factors coordinate the activity of large suites of genes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, J.L., Pollen, A.A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2024). https://doi.org/10.1038/s41583-023-00760-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00760-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing