Skip to main content
Log in

Waking Up to the Issue! Research Inattention and Sex-Related Differences Warrant More Sleep Studies in Female Athletes

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Understanding sleep patterns and behaviors of athletes is essential for developing targeted sleep-based interventions for implementation in practice. However, more than double the number of sleep studies have examined male athletes compared with female athletes, making the current understanding of sleep patterns, behaviors, and interventions among athletes disproportionately indicative of men. Consequently, this review demonstrates the need for more female-specific sleep data among athlete populations due to research inattention and sex-related differences. Specifically, this review identifies variations in sleep patterns and behaviors between male and female athletes, as well as physiological and lifestyle factors that potentially affect sleep patterns and behaviors across the lifespan, specifically in female athletes. In this regard, evidence suggests some female athletes experience longer sleep durations and better objective sleep quality, but similar or worse subjective sleep quality compared with male athletes. Additionally, scheduling training in the morning or throughout the day may benefit sleep in some female athletes. Considering sleep disorders, women may be at greater risk for insomnia and restless legs syndrome compared with men, which may be attributed to pregnancy, as well as a higher prevalence of anxiety and depressive symptoms, iron deficiency without anemia, and use of psychotropic medication among women. Finally, the menstrual cycle, menstrual disorders, oral contraceptive use, and the postpartum period have been shown to exert detrimental effects on sleep patterns and behaviors and should theoretically be considered when monitoring and managing sleep in female athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sport Australia. AusPlay survey 2021. https://www.clearinghouseforsport.gov.au. Accessed 18 Feb 2022.

  2. Statista. Number of athletes competing at the Tokyo 2020 Olympics in Japan as of July 2021, by gender. https://www.statista.com/statistics/1254529/japan-number-athletes-competing-tokyo-2020-olympics-by-gender/. Accessed 18 Feb 2022.

  3. Statista. Number of NCAA student athletes in the United States in 2020, by gender. https://www.statista.com/statistics/1098761/student-athletes-by-gender/. Accessed 23 Mar 2022.

  4. Sport Australia. AusPlay survey 2016. https://www.clearinghouseforsport.gov.au. Accessed 18 Feb 2022.

  5. National Collegiate Athletics Association. Number of NCAA college athletes climbs again. https://www.ncaa.org/news/2015/10/29/number-of-ncaa-college-athletes-climbs-again.aspx. Accessed 23 Mar 2022.

  6. Statista. Share of female participants in the Olympic Summer Games from 1900 to 2020. https://www.statista.com/statistics/531146/women-participants-in-olympic-summer-games/. Accessed 18 Feb 2022.

  7. Forsyth J, Roberts CM, editors. The exercising female: science and its application. 1st ed. London: Routledge; 2018.

    Google Scholar 

  8. Miles KH, Clark B, Fowler PM, Miller J, Pumpa KL. Sleep practices implemented by team sport coaches and sports science support staff: a potential avenue to improve athlete sleep? J Sci Med Sport. 2019;22(7):748–52. https://doi.org/10.1016/j.jsams.2019.01.008.

    Article  PubMed  Google Scholar 

  9. Juliff LE, Halson SL, Hebert JJ, Forsyth PL, Peiffer JJ. Longer sleep durations are positively associated with finishing place during a national multiday netball competition. J Strength Cond Res. 2018;32(1):189–94. https://doi.org/10.1519/jsc.0000000000001793.

    Article  PubMed  Google Scholar 

  10. Hamlin MJ, Deuchrass RW, Olsen PD, Choukri MA, Marshall HC, Lizamore CA, et al. The effect of sleep quality and quantity on athlete’s health and perceived training quality. Front Sports Act Living. 2021;3: 705650. https://doi.org/10.3389/fspor.2021.705650.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–3. https://doi.org/10.1016/j.sleh.2014.12.010.

    Article  PubMed  Google Scholar 

  12. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9. https://doi.org/10.1016/s0140-6736(99)01376-8.

    Article  CAS  PubMed  Google Scholar 

  13. Mejri M, Hammouda O, Chaouachi A, Zouaoui K, Rayana MB, Souissi N. Effects of two types of partial sleep deprivation on hematological responses during intermittent exercise: a pilot study. Sci Sports. 2014;29(5):266–74.

    Article  Google Scholar 

  14. Maquet P. The role of sleep in learning and memory. Science. 2001;294(5544):1048–52.

    Article  CAS  PubMed  Google Scholar 

  15. Watson A, Brickson S. Impaired sleep mediates the negative effects of training load on subjective well-being in female youth athletes. Sports Health. 2018;10(3):244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andrade A, Bevilacqua GG, Coimbra DR, Pereira FS, Brandt R. Sleep quality, mood and performance: a study of elite Brazilian volleyball athletes. J Sports Sci Med. 2016;15(4):601–5.

    PubMed  PubMed Central  Google Scholar 

  17. Sufrinko A, Johnson EW, Henry LC. The influence of sleep duration and sleep-related symptoms on baseline neurocognitive performance among male and female high school athletes. Neuropsychology. 2016;30(4):484–91. https://doi.org/10.1037/neu0000250.

    Article  PubMed  Google Scholar 

  18. Hajsalem M, Chtourou H, Aloui A, Hammouda O, Souissi N. Effects of partial sleep deprivation at the end of the night on anaerobic performances in judokas. Biol Rhythm Res. 2013;44(5):815–21. https://doi.org/10.1080/09291016.2012.756282.

    Article  Google Scholar 

  19. Mougin F, Simon-Rigaud ML, Davenne D, Renaud A, Garnier A, Kantelip JP, et al. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol Occup Physiol. 1991;63(2):77–82. https://doi.org/10.1007/bf00235173.

    Article  CAS  PubMed  Google Scholar 

  20. Vlahoyiannis A, Aphamis G, Bogdanis GC, Sakkas GK, Andreou E, Giannaki CD. Deconstructing athletes’ sleep: a systematic review of the influence of age, sex, athletic expertise, sport type, and season on sleep characteristics. J Sport Health Sci. 2021;10(4):387–402. https://doi.org/10.1016/j.jshs.2020.03.006.

    Article  PubMed  Google Scholar 

  21. Roberts SSH, Teo W-P, Warmington SA. Effects of training and competition on the sleep of elite athletes: a systematic review and meta-analysis. Br J Sports Med. 2019;53(8):513–22. https://doi.org/10.1136/bjsports-2018-099322.

    Article  PubMed  Google Scholar 

  22. Gratwicke M, Miles KH, Pyne DB, Pumpa KL, Clark B. Nutritional interventions to improve sleep in team-sport athletes: a narrative review. Nutrients. 2021;13(5):1586. https://doi.org/10.3390/nu13051586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonnar D, Bartel K, Kakoschke N, Lang C. Sleep interventions designed to improve athletic performance and recovery: a systematic review of current approaches. Sports Med. 2018;48(3):683–703. https://doi.org/10.1007/s40279-017-0832-x.

    Article  PubMed  Google Scholar 

  24. Duffy JF, Cain SW, Chang AM, Phillips AJK, Munch MY, Gronfier C, et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci. 2011;108(S3):15602–8. https://doi.org/10.1073/pnas.1010666108.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cain SW, Dennison CF, Zeitzer JM, Guzik AM, Khalsa SBS, Santhi N, et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythms. 2010;25(4):288–96. https://doi.org/10.1177/0748730410374943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson EO, Roth T, Schultz L, Breslau N. Epidemiology of DSM-IV insomnia in adolescence: lifetime prevalence, chronicity, and an emergent gender difference. Pediatrics. 2006;117(2):247–56. https://doi.org/10.1542/peds.2004-2629.

    Article  Google Scholar 

  27. Bezerra AG, Andersen ML, Pires GN, Banzoli CV, Polesel DN, Tufik S, et al. Hormonal contraceptive use and subjective sleep reports in women: an online survey. J Sleep Res. 2020;29(6): e12983. https://doi.org/10.1111/jsr.12983.

    Article  PubMed  Google Scholar 

  28. Guida M, Rega A, Vivone I, Saccone G, Sarno L, Di Carlo C, et al. Variations in sleep associated with different types of hormonal contraceptives. Gynecol Endocrinol. 2020;36(2):166–70. https://doi.org/10.1080/09513590.2019.1640204.

    Article  CAS  PubMed  Google Scholar 

  29. Insana SP, Montgomery-Downs HE. Sleep and sleepiness among first-time postpartum parents: a field- and laboratory-based multimethod assessment. Dev Psychobiol. 2013;55(4):361–72. https://doi.org/10.1002/dev.21040.

    Article  PubMed  Google Scholar 

  30. Beersma DGM, Gordijn MCM. Circadian control of the sleep–wake cycle. Physiol Behav. 2007;90(2–3):190–5. https://doi.org/10.1016/j.physbeh.2006.09.010.

    Article  CAS  PubMed  Google Scholar 

  31. Carskadon MA, Dement WC. Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St Louis: Elsevier Saunders; 2005.

    Google Scholar 

  32. Frank MG, Benington JH. The role of sleep in memory consolidation and brain plasticity: dream or reality? Neuroscientist. 2006;12(6):477–88. https://doi.org/10.1177/1073858406293552.

    Article  PubMed  Google Scholar 

  33. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21(6):553–66.

    PubMed  Google Scholar 

  34. Ryan T, Mlynczak S, Erickson T, Man SP, Man GC. Oxygen consumption during sleep: influence of sleep stage and time of night. Sleep. 1989;12(3):201–10.

    CAS  PubMed  Google Scholar 

  35. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vandekerckhove M, Wang Y-L. Emotion, emotion regulation and sleep: an intimate relationship. AIMS Neurosci. 2017;5(1):1–17. https://doi.org/10.3934/Neuroscience.2018.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel AK, Reddy V, Araujo JF. Physiology, sleep stages. StatPearls [Internet]. 2021.

  38. Hrozanova M, Klöckner CA, Sandbakk Ø, Pallesen S, Moen F. Sex differences in sleep and influence of the menstrual cycle on women’s sleep in junior endurance athletes. PLoS ONE. 2021;16(6): e0253376. https://doi.org/10.1371/journal.pone.0253376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carter JR, Gervais BM, Adomeit JL, Greenlund IM. Subjective and objective sleep differ in male and female collegiate athletes. Sleep Health. 2020;6(5):623–8. https://doi.org/10.1016/j.sleh.2020.01.016.

    Article  PubMed  Google Scholar 

  40. Silva A, Narciso FV, Rosa JP, Rodrigues DF, Cruz AÂDS, Tufik S, et al. Gender differences in sleep patterns and sleep complaints of elite athletes. Sleep Sci. 2019;12(4):242–8. https://doi.org/10.5935/1984-0063.20190084.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sargent C, Lastella M, Halson SL, Roach GD. How much sleep does an elite athlete need? Int J Sports Physiol Perform. 2021. https://doi.org/10.1123/ijspp.2020-0896.

    Article  PubMed  Google Scholar 

  42. Halson S, Johnston R, Appaneal R, Rogers M, Toohey L, Drew M, et al. Sleep quality in elite athletes: normative values, reliability and understanding contributors to poor sleep. Sports Med. 2022;52(2):417–26. https://doi.org/10.1007/s40279-021-01555-1.

    Article  PubMed  Google Scholar 

  43. Koikawa N, Shimada S, Suda S, Murata A, Kasai T. Sex differences in subjective sleep quality, sleepiness, and health-related quality of life among collegiate soccer players. Sleep Biol Rhythms. 2016;14(4):377–86. https://doi.org/10.1007/s41105-016-0068-4.

    Article  Google Scholar 

  44. Hoshikawa M, Uchida S, Hirano Y. A subjective assessment of the prevalence and factors associated with poor sleep quality amongst elite Japanese athletes. Sports Med Open. 2018. https://doi.org/10.1186/s40798-018-0122-7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mantua J, Simonelli G. Sleep duration and cognition: is there an ideal amount? Sleep. 2019. https://doi.org/10.1093/sleep/zsz010.

    Article  PubMed  Google Scholar 

  46. Brand S, Lemola S, Holsboer-Trachsler E, Grob A, Kalak N. Sleep duration and subjective psychological well-being in adolescence: a longitudinal study in Switzerland and Norway. Neuropsychiatr Dis Treat. 2014;3(10):1199–207. https://doi.org/10.2147/ndt.s62533.

    Article  Google Scholar 

  47. Paulauskas H, Kreivyte R, Scanlan A, Moreira A, Siupsinskas L, Conte D. Monitoring workload in elite female basketball players during the in-season phase: weekly fluctuations and effect of playing time. Int J Sports Physiol Perform. 2019;14(7):941–8. https://doi.org/10.1123/ijspp.2018-0741.

    Article  PubMed  Google Scholar 

  48. Huyghe T, Scanlan A, Dalbo V, Calleja-González J. The negative influence of air travel on health and performance in the national basketball association: a narrative review. Sports. 2018;6(3):89. https://doi.org/10.3390/sports6030089.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161–86. https://doi.org/10.1007/s40279-014-0260-0.

    Article  PubMed  Google Scholar 

  50. Mah CD, Kezirian EJ, Marcello BM, Dement WC. Poor sleep quality and insufficient sleep of a collegiate student-athlete population. Sleep Health. 2018;4(3):251–7. https://doi.org/10.1016/j.sleh.2018.02.005.

    Article  PubMed  Google Scholar 

  51. Toften S, Pallesen S, Hrozanova M, Moen F, Grønli J. Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy®). Sleep Med. 2020;75:54–61. https://doi.org/10.1016/j.sleep.2020.02.022.

    Article  PubMed  Google Scholar 

  52. Fullagar HHK, Duffield R, Skorski S, Coutts AJ, Julian R, Meyer T. Sleep and recovery in team sport: current sleep-related issues facing professional team-sport athletes. Int J Sports Physiol Perform. 2015;10(8):950–7. https://doi.org/10.1123/ijspp.2014-0565.

    Article  PubMed  Google Scholar 

  53. Byun JH, Kim KT, Moon HJ, Motamedi GK, Cho YW. The first night effect during polysomnography, and patients’ estimates of sleep quality. Psychiatry Res. 2019;274:27–9. https://doi.org/10.1016/j.psychres.2019.02.011.

    Article  PubMed  Google Scholar 

  54. Khullar A. The role of melatonin in the circadian rhythm sleep-wake cycle: a review of endogenous and exogenous melatonin. Psychiatr Times. 2012;29(7):26.

    Google Scholar 

  55. Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175(16):3190–9. https://doi.org/10.1111/bph.14116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol. 2014;35(1):111–39. https://doi.org/10.1016/j.yfrne.2013.11.003.

    Article  PubMed  Google Scholar 

  57. Arciero PJ, Ives SJ, Mohr AE, Robinson N, Escudero D, Robinson J, et al. Morning exercise reduces abdominal fat and blood pressure in women; evening exercise increases muscular performance in women and lowers blood pressure in men. Front Physiol. 2022;13: e893783. https://doi.org/10.3389/fphys.2022.893783.

    Article  Google Scholar 

  58. Reilly T, Edwards B. Altered sleep-wake cycles and physical performance in athletes. Physiol Behav. 2007;90(2–3):274–84. https://doi.org/10.1016/j.physbeh.2006.09.017.

    Article  CAS  PubMed  Google Scholar 

  59. McLean BD, Strack D, Russell J, Coutts AJ. Quantifying physical demands in the National Basketball Association-Challenges around developing best-practice models for athlete care and performance. Int J Sports Physiol Perform. 2019;14(4):414–20. https://doi.org/10.1123/ijspp.2018-0384.

    Article  PubMed  Google Scholar 

  60. Calleja-Gonzalez J, Marques-Jimenez D, Jones M, Huyghe T, Navarro F, Delextrat A, et al. What are we doing wrong when athletes report higher levels of fatigue from traveling than from training or competition? Front Psychol. 2020;11:194. https://doi.org/10.3389/fpsyg.2020.00194.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hodge K, Smith W. Public expectation, pressure, and avoiding the choke: a case study from elite sport. Sport Psychol. 2014;28(4):375–89. https://doi.org/10.1123/tsp.2014-0005.

    Article  Google Scholar 

  62. Monma T, Ando A, Asanuma T, Yoshitake Y, Yoshida G, Miyazawa T, et al. Sleep disorder risk factors among student athletes. Sleep Med. 2018;44:76–81. https://doi.org/10.1016/j.sleep.2017.11.1130.

    Article  PubMed  Google Scholar 

  63. Fernández MM, Brito CJ, Miarka B, Díaz-de-Durana AL. Anxiety and emotional intelligence: comparisons between combat sports, gender and levels using the trait meta-mood scale and the inventory of situations and anxiety response. Front Psychol. 2020;11:130. https://doi.org/10.3389/fpsyg.2020.00130.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fulda S. Gender differences in the prevalence of restless legs syndrome/Willis–Ekbom disease. Somnologie. 2013;17(4):246–51. https://doi.org/10.1007/s11818-013-0636-7.

    Article  Google Scholar 

  65. Lin CM, Davidson TM, Ancoli-Israel S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev. 2008;12(6):481–96. https://doi.org/10.1016/j.smrv.2007.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  66. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  67. Harvey AG. A cognitive model of insomnia. Behav Res Ther. 2002;40(8):869–93. https://doi.org/10.1016/s0005-7967(01)00061-4.

    Article  CAS  PubMed  Google Scholar 

  68. Kahn M, Sheppes G, Sadeh A. Sleep and emotions: bidirectional links and underlying mechanisms. Int J Psychophysiol. 2013;89(2):218–28. https://doi.org/10.1016/j.ijpsycho.2013.05.010.

    Article  PubMed  Google Scholar 

  69. Zammit GK. Subjective ratings of the characteristics and sequelae of good and poor sleep in normals. J Clin Psychol. 1988;44(2):123–30. https://doi.org/10.1002/1097-4679(198803)44:2%3c123::aid-jclp2270440206%3e3.0.co;2-d.

    Article  CAS  PubMed  Google Scholar 

  70. Gupta L, Morgan K, Gilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):1317–33. https://doi.org/10.1007/s40279-016-0650-6.

    Article  PubMed  Google Scholar 

  71. Schaal K, Tafflet M, Nassif H, Thibault V, Pichard C, Alcotte M, et al. Psychological balance in high level athletes: gender-based differences and sport-specific patterns. PLoS ONE. 2011;6(5): e19007. https://doi.org/10.1371/journal.pone.0019007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Walton CC, Rice S, Gao CX, Butterworth M, Clements M, Purcell R. Gender differences in mental health symptoms and risk factors in Australian elite athletes. BMJ Open Sport Exerc Med. 2021;7(1): e000984. https://doi.org/10.1136/bmjsem-2020-000984.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang J, Peek-Asa C, Corlette JD, Cheng G, Foster DT, Albright J. Prevalence of and risk factors associated with symptoms of depression in competitive collegiate student athletes. Clin J Sport Med. 2007;17(6):481–7. https://doi.org/10.1097/JSM.0b013e31815aed6b.

    Article  PubMed  Google Scholar 

  74. Jansson M, Linton SJ. The role of anxiety and depression in the development of insomnia: cross-sectional and prospective analyses. Psychol Health. 2006;21(3):383–97.

    Article  Google Scholar 

  75. Jansson-Fröjmark M, Lindblom K. A bidirectional relationship between anxiety and depression, and insomnia? A prospective study in the general population. J Psychosom Res. 2008;64(4):443–9. https://doi.org/10.1016/j.jpsychores.2007.10.016.

    Article  PubMed  Google Scholar 

  76. Johnson EO, Roth T, Breslau N. The association of insomnia with anxiety disorders and depression: exploration of the direction of risk. J Psychiatr Res. 2006;40(8):700–8. https://doi.org/10.1016/j.jpsychires.2006.07.008.

    Article  PubMed  Google Scholar 

  77. Altemus M, Sarvaiya N, Neill EC. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35(3):320–30. https://doi.org/10.1016/j.yfrne.2014.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless Legs Syndrome/Willis–Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep Med. 2014;15(8):860–73. https://doi.org/10.1016/j.sleep.2014.03.025.

    Article  PubMed  Google Scholar 

  79. Manconi M, Ulfberg J, Berger K, Ghorayeb I, Wesström J, Fulda S, et al. When gender matters: restless legs syndrome. Report of the “RLS and woman” workshop endorsed by the European RLS Study Group. Sleep Med Rev. 2012;16(4):297–307. https://doi.org/10.1016/j.smrv.2011.08.006.

    Article  PubMed  Google Scholar 

  80. Earley CJ, Barker PB, Horská A, Allen RP. MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med. 2006;7(5):458–61. https://doi.org/10.1016/j.sleep.2005.11.009.

    Article  PubMed  Google Scholar 

  81. Allen RP, Barker PB, Wehrl FW, Song HK, Earley CJ. MRI measurement of brain iron in patients with restless legs syndrome. Neurology. 2001;56(2):263–5. https://doi.org/10.1212/wnl.56.2.263.

    Article  CAS  PubMed  Google Scholar 

  82. The Royal College of Pathologists of Australasia. Ferritin. https://www.rcpa.edu.au/Manuals/RCPA-Manual/Pathology-Tests/F/Ferritin. Accessed 28 July 2022.

  83. Allen RP, Earley CJ. The role of iron in restless legs syndrome. Mov Disord. 2007;22(S18):440–8. https://doi.org/10.1002/mds.21607.

    Article  Google Scholar 

  84. Abuaisha M, Itani H, El Masri R, Antoun J. Prevalence of iron deficiency (ID) without anemia in the general population presenting to primary care clinics: a cross-sectional study. Postgrad Med. 2020;132(3):282–7. https://doi.org/10.1080/00325481.2020.1715701.

    Article  CAS  PubMed  Google Scholar 

  85. Hausken AM, Skurtveit S, Rosvold EO, Bramness JG, Furu K. Psychotropic drug use among persons with mental distress symptoms: a population-based study in Norway. Scand J Public Health. 2007;35(4):356–64. https://doi.org/10.1080/14034940601159161.

    Article  PubMed  Google Scholar 

  86. Patatanian E, Claborn MK. Drug-induced restless legs syndrome. Ann Pharmacother. 2018;52(7):662–72. https://doi.org/10.1177/1060028018760296.

    Article  CAS  PubMed  Google Scholar 

  87. Rottach KG, Schaner BM, Kirch MH, Zivotofsky AZ, Teufel LM, Gallwitz T, et al. Restless legs syndrome as side effect of second generation antidepressants. J Psychiatr Res. 2008;43(1):70–5. https://doi.org/10.1016/j.jpsychires.2008.02.006.

    Article  PubMed  Google Scholar 

  88. de Oliveira CJ, Gilles MB, Schaffer AL, Peiris D, Zoega H, Pearson S-A. Changes in antidepressant use in Australia: a nationwide analysis (2015–2021). Aust NZ J Psychiatry. 2023;57(1):49–57. https://doi.org/10.1177/00048674221079740.

    Article  Google Scholar 

  89. Rowland T. Iron deficiency in athletes. Am J Lifestyle Med. 2012;6(4):319–27. https://doi.org/10.1177/1559827611431541.

    Article  Google Scholar 

  90. Yardbarker. Female athletes who returned to action after giving birth. https://www.yardbarker.com/general_sports/articles/female_athletes_who_returned_to_action_after_giving_birth/s1__26716052#slide_1. Accessed 31 Dec 2021.

  91. Esteves AM, Mello MTD, Benedito-Silva AA, Tufik S. Impact of aerobic physical exercise on restless legs syndrome. Sleep Sci. 2011;4(2):45–8.

    Google Scholar 

  92. Aukerman MM, Aukerman D, Bayard M, Tudiver F, Thorp L, Bailey B. Exercise and restless legs syndrome: a randomized controlled trial. J Am Board Fam Med. 2006;19(5):487–93. https://doi.org/10.3122/jabfm.19.5.487.

    Article  PubMed  Google Scholar 

  93. Cederberg KLJ, Sikes EM, Mignot E. Perceptions of exercise and restless legs syndrome: results from a nationwide survey. J Sleep Res. 2023. https://doi.org/10.1111/jsr.13980.

    Article  PubMed  Google Scholar 

  94. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43. https://doi.org/10.1513/pats.200709-155mg.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep. 2016;39(12):2091–100. https://doi.org/10.5665/sleep.6304.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177(3):385–90. https://doi.org/10.1046/j.1365-201x.2003.01091.x.

    Article  CAS  PubMed  Google Scholar 

  97. Pham LV, Schwartz AR, Jun JC. Oxyhemoglobin saturation overshoot following obstructive breathing events mitigates sleep apnea-induced glucose elevations. Front Endocrinol. 2018;9:477. https://doi.org/10.3389/fendo.2018.00477.

    Article  Google Scholar 

  98. Dopp JM, Reichmuth KJ, Morgan BJ. Obstructive sleep apnea and hypertension: mechanisms, evaluation, and management. Curr Hypertens Rep. 2007;9(6):529–34. https://doi.org/10.1007/s11906-007-0095-2.

    Article  PubMed  Google Scholar 

  99. Young T. Risk factors for obstructive sleep apnea in adults. JAMA. 2004;291(16):2013–6. https://doi.org/10.1001/jama.291.16.2013.

    Article  CAS  PubMed  Google Scholar 

  100. Swinbourne R, Gill N, Vaile J, Smart D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur J Sport Sci. 2016;16(7):850–8.

    Article  PubMed  Google Scholar 

  101. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002.

    Article  PubMed  Google Scholar 

  102. Reddy EV, Kadhiravan T, Mishra HK, Sreenivas V, Handa KK, Sinha S, et al. Prevalence and risk factors of obstructive sleep apnea among middle-aged urban Indians: a community-based study. Sleep Med. 2009;10(8):913–8. https://doi.org/10.1016/j.sleep.2008.08.011.

    Article  PubMed  Google Scholar 

  103. Redline S, Sotres-Alvarez D, Loredo J, Hall M, Patel SR, Ramos A, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014;189(3):335–44. https://doi.org/10.1164/rccm.201309-1735OC.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barsh LI. The origin of pharyngeal obstruction during sleep. Sleep Breath. 1999;3(1):17–21. https://doi.org/10.1007/s11325-999-0017-4.

    Article  PubMed  Google Scholar 

  105. Netzer NC, Eliasson AH, Strohl KP. Women with sleep apnea have lower levels of sex hormones. Sleep Breath. 2003;7(1):25–9. https://doi.org/10.1007/s11325-003-0025-8.

    Article  PubMed  Google Scholar 

  106. Jehan S, Auguste E, Zizi F, Pandi-Perumal SR, Gupta R, Attarian H, et al. Obstructive sleep apnea: women’s perspective. J Sleep Med Disord. 2016;3(6):1064.

    PubMed  PubMed Central  Google Scholar 

  107. Sigurðardóttir ES, Gislason T, Benediktsdottir B, Hustad S, Dadvand P, Demoly P, et al. Female sex hormones and symptoms of obstructive sleep apnea in European women of a population-based cohort. PLoS ONE. 2022;17(6): e0269569. https://doi.org/10.1371/journal.pone.0269569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hackney AC, editor. Sex hormones, exercise and women: scientific and clinical aspects. Cham: Springer; 2017.

    Google Scholar 

  109. ACOG Committee Opinion No. 760. Dysmenorrhea and endometriosis in the adolescent. Obstet Gynecol. 2018;132(6):e249–58. https://doi.org/10.1097/aog.0000000000002978.

    Article  Google Scholar 

  110. Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40. https://doi.org/10.7326/0003-4819-129-3-199808010-00012.

    Article  CAS  PubMed  Google Scholar 

  111. Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Simoes DCM, Thomas K, et al. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol. 2019;126(6):1701–12. https://doi.org/10.1152/japplphysiol.01041.2018.

    Article  CAS  PubMed  Google Scholar 

  112. Carmichael MA, Thomson RL, Moran LJ, Dunstan JR, Nelson MJ, Mathai ML, et al. A pilot study on the impact of menstrual cycle phase on elite Australian football athletes. Int J Environ Res Public Health. 2021;18(18):9591. https://doi.org/10.3390/ijerph18189591.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32. https://doi.org/10.1123/ijspp.2017-0330.

    Article  PubMed  Google Scholar 

  114. Momma R, Nakata Y, Sawai A, Takeda M, Natsui H, Mukai N, et al. Comparisons of the prevalence, severity, and risk factors of dysmenorrhea between Japanese female athletes and non-athletes in universities. Int J Environ Res Public Health. 2021;19(1):52. https://doi.org/10.3390/ijerph19010052.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Czajkowska M, Drosdzol-Cop A, Gałązka I, Naworska B, Skrzypulec-Plinta V. Menstrual cycle and the prevalence of premenstrual syndrome/premenstrual dysphoric disorder in adolescent athletes. J Pediatr Adolesc Gynecol. 2015;28(6):492–8. https://doi.org/10.1016/j.jpag.2015.02.113.

    Article  PubMed  Google Scholar 

  116. Baker FC, Driver HS, Rogers GG, Paiker J, Mitchell D. High nocturnal body temperatures and disturbed sleep in women with primary dysmenorrhea. Am J Physiol. 1999;277(6):1013–21. https://doi.org/10.1152/ajpendo.1999.277.6.E1013.

    Article  Google Scholar 

  117. Baker FC, Sassoon SA, Kahan T, Palaniappan L, Nicholas CL, Trinder J, et al. Perceived poor sleep quality in the absence of polysomnographic sleep disturbance in women with severe premenstrual syndrome. J Sleep Res. 2012;21(5):535–45. https://doi.org/10.1111/j.1365-2869.2012.01007.x.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Office of the Assistant Secretary for Health. Birth control methods. https://www.womenshealth.gov/a-z-topics/birth-control-methods. Accessed 24 Dec 2021.

  119. Elliott-Sale KJ, McNulty KL, Ansdell P, Goodall S, Hicks KM, Thomas K, et al. The effects of oral contraceptives on exercise performance in women: a systematic review and meta-analysis. Sports Med. 2020;50(10):1785–812. https://doi.org/10.1007/s40279-020-01317-5.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bennell K, White S, Crossley K. The oral contraceptive pill: a revolution for sportswomen? Br J Sports Med. 1999;33(4):231–8. https://doi.org/10.1136/bjsm.33.4.231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schaumberg MA, Emmerton LM, Jenkins DG, Burton NW, Janse de Jonge XAK, Skinner TL. Use of oral contraceptives to manipulate menstruation in young, physically active women. Int J Sports Physiol Perform. 2018;13(1):82–7. https://doi.org/10.1123/ijspp.2016-0689.

    Article  PubMed  Google Scholar 

  122. Nolan D, Elliott-Sale KJ, Egan B. Prevalence of hormonal contraceptive use and reported side effects of the menstrual cycle and hormonal contraceptive use in powerlifting and rugby. Phys Sportsmed. 2022;6:1–6. https://doi.org/10.1080/00913847.2021.2024774.

    Article  Google Scholar 

  123. Larsen B, Cox A, Colbey C, Drew M, McGuire H, Fazekas de St Groth B, et al. inflammation and oral contraceptive use in female athletes before the Rio olympic games. Front Physiol. 2020;11:497. https://doi.org/10.3389/fphys.2020.00497.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Burdick RS, Hoffmann R, Armitage R. Short note: oral contraceptives and sleep in depressed and healthy women. Sleep. 2002;25(3):347–9.

    PubMed  Google Scholar 

  125. Baker F, Mitchell D, Driver H. Oral contraceptives alter sleep and raise body temperature in young women. Pflugers Arch. 2001;442(5):729–37. https://doi.org/10.1007/s004240100582.

    Article  CAS  PubMed  Google Scholar 

  126. Sundgot-Borgen J, Sundgot-Borgen C, Myklebust G, Sølvberg N, Torstveit MK. Elite athletes get pregnant, have healthy babies and return to sport early postpartum. BMJ Open Sport Exerc Med. 2019;5(1): e000652.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Elmenshawy AR, Machin DR, Tanaka H. A rise in peak performance age in female athletes. Age. 2015;37(3):9795. https://doi.org/10.1007/s11357-015-9795-8.

    Article  PubMed  Google Scholar 

  128. ABC News. Australian-first study paves way for professional athletes to return to elite sport after having children. https://www.abc.net.au/news/2021-11-13/ais-launches-study-paving-way-for-mothers-returning-to-sport/100615432. Accessed 31 Dec 2021.

  129. Union of European Football Association. UEFA Women's Championship League lays foundations for more sustainable future. https://www.uefa.com/insideuefa/mediaservices/mediareleases/news/0268-122415a0fc64-78d08826a35b-1000--uefa-women-s-champions-league-lays-foundations-for-more-sustain/. Accessed 29 Dec 2021.

  130. Santiago JR, Nolledo MS, Kinzler W, Santiago TV. Sleep and sleep disorders in pregnancy. Ann Intern Med. 2001;134(5):396–408. https://doi.org/10.7326/0003-4819-134-5-200103060-00012.

    Article  CAS  PubMed  Google Scholar 

  131. Insana SP, Garfield CF, Montgomery-Downs HE. A mixed-method examination of maternal and paternal nocturnal caregiving. J Pediatr Health Care. 2014;28(4):313–21. https://doi.org/10.1016/j.pedhc.2013.07.016.

    Article  PubMed  Google Scholar 

  132. Said S, Johansson ED, Gemzell C. Serum oestrogens and progesterone after normal delivery. J Obstet Gynaecol Br Commonw. 1973;80(6):542–5. https://doi.org/10.1111/j.1471-0528.1973.tb15977.x.

    Article  CAS  PubMed  Google Scholar 

  133. Saaresranta T, Anttalainen U, Polo O. Sleep disordered breathing: is it different for females? ERJ Open Res. 2015;1(2):00063–2015. https://doi.org/10.1183/23120541.00063-2015.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kloss JD, Perlis ML, Zamzow JA, Culnan EJ, Gracia CR. Sleep, sleep disturbance, and fertility in women. Sleep Med Rev. 2015;22:78–87. https://doi.org/10.1016/j.smrv.2014.10.005.

    Article  PubMed  Google Scholar 

  135. Vitale KC, Owens R, Hopkins SR, Malhotra A. Sleep hygiene for optimizing recovery in athletes: review and recommendations. Int J Sports Med. 2019;40(8):535–43. https://doi.org/10.1055/a-0905-3103.

    Article  PubMed  PubMed Central  Google Scholar 

  136. O’Donnell S, Driller MW. Sleep-hygiene education improves sleep indices in elite female athletes. Int J Exerc Sci. 2017;10(4):522–30.

    PubMed  PubMed Central  Google Scholar 

  137. Walsh NP, Halson SL, Sargent C, Roach GD, Nédélec M, Gupta L, et al. Sleep and the athlete: narrative review and 2021 expert consensus recommendations. Br J Sports Med. 2021;55(7):356–68. https://doi.org/10.1136/bjsports-2020-102025.

    Article  Google Scholar 

  138. Linton SJ, Kecklund G, Franklin KA, Leissner LC, Sivertsen B, Lindberg E, et al. The effect of the work environment on future sleep disturbances: a systematic review. Sleep Med Rev. 2015;23:10–9. https://doi.org/10.1016/j.smrv.2014.10.010.

    Article  PubMed  Google Scholar 

  139. Kosmadopoulos A, Sargent C, Darwent D, Zhou X, Roach GD. Alternatives to polysomnography (PSG): a validation of wrist actigraphy and a partial-PSG system. Behav Res Methods. 2014;46(4):1032–41. https://doi.org/10.3758/s13428-013-0438-7.

    Article  PubMed  Google Scholar 

  140. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, et al. Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep. 2013;36(11):1747–55. https://doi.org/10.5665/sleep.3142.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sargent C, Lastella M, Halson SL, Roach GD. The validity of activity monitors for measuring sleep in elite athletes. J Sci Med Sport. 2016;19(10):848–53. https://doi.org/10.1016/j.jsams.2015.12.007.

    Article  PubMed  Google Scholar 

  142. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh Sleep Quality Index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. https://doi.org/10.1016/j.smrv.2015.01.009.

    Article  PubMed  Google Scholar 

  143. Demirel H. Sleep quality differs between athletes and non-athletes. Clin Invest Med. 2016;39:184–6. https://doi.org/10.25011/cim.v39i6.27525.

    Article  Google Scholar 

  144. Jaiswal S, Shashikala KT. A comparative study of sleep quality in athletes & non athletes. Int J Physiol. 2020;8(2):162–6. https://doi.org/10.37506/ijop.v8i2.1268.

    Article  Google Scholar 

  145. Lastella M, Roach GD, Halson SL, Sargent C. The chronotype of elite athletes. J Hum Kinet. 2016;54(1):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bender AM, Van Dongen HP, Samuels CH. Sleep quality and chronotype differences between elite athletes and non-athlete controls. Clocks & Sleep. 2018;1(1):3–12.

    Article  Google Scholar 

  147. Lim S-T, Kim D-Y, Kwon H-T, Lee E. Sleep quality and athletic performance according to chronotype. BMC Sports Sci Med Rehabil. 2021;13(1):2. https://doi.org/10.1186/s13102-020-00228-2.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kissow J, Jacobsen KJ, Gunnarsson TP, Jessen S, Hostrup M. Effects of follicular and luteal phase-based menstrual cycle resistance training on muscle strength and mass. Sports Med. 2022;52(12):2813–9. https://doi.org/10.1007/s40279-022-01679-y.

    Article  PubMed  Google Scholar 

  149. McCall C, McCall WV. Objective vs. subjective measurements of sleep in depressed insomniacs: first night effect or reverse first night effect? J Clin Sleep Med. 2012;8(1):59–65. https://doi.org/10.5664/jcsm.1664.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tamaki M, Nittono H, Hayashi M, Hori T. Examination of the first-night effect during the sleep-onset period. Sleep. 2005;28(2):195–202. https://doi.org/10.1093/sleep/28.2.195.

    Article  PubMed  Google Scholar 

  151. Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms. 2006;21(6):482–93.

    Article  CAS  PubMed  Google Scholar 

  152. Merriam-Webster. Melatonin. https://www.merriam-webster.com/dictionary/melatonin. Accessed 17 June 2022.

  153. Encylcopedia. Core body temperature. https://www.encyclopedia.com/sports/sports-fitness-recreation-and-leisure-magazines/core-body-temperature. Accessed 17 June 2022.

  154. Wright KP, Hughes RJ, Kronauer RE, Dijk D-J, Czeisler CA. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci. 2001;98(24):14027–32. https://doi.org/10.1073/pnas.201530198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Krisanits B, Randise JF, Burton CE, Findlay VJ, Turner DP. Chapter Three—Pubertal mammary development as a “susceptibility window” for breast cancer disparity. In: Ford ME, Esnaola NF, Salley JD, editors. Advances in cancer research. New York: Academic Press; 2020. p. 57–82.

    Google Scholar 

  156. Romano M, Cacciatore A, Giordano R, La Rosa B. Postpartum period: three distinct but continuous phases. J Prenat Med. 2010;4(2):22–5.

    PubMed  PubMed Central  Google Scholar 

  157. Wilkinson K, Shapiro C. Development and validation of the Nonrestorative Sleep Scale (NRSS). J Clin Sleep Med. 2013;9(9):929–37. https://doi.org/10.5664/jcsm.2996.

    Article  PubMed  PubMed Central  Google Scholar 

  158. McKenna KA, Fogleman CD. Dysmenorrhea. Am Fam Physician. 2021;104(2):164–70.

    PubMed  Google Scholar 

  159. American College of Obstetricians and Gynecologists. Amenorrhea: absence of periods. https://www.acog.org/womens-health/faqs/amenorrhea-absence-of-periods. Accessed 17 June 2022.

  160. Apgar BS, Kaufman AH, George-Nwogu U, Kittendorf AL. Treatment of menorrhagia. Am Fam Physician. 2007;75(12):1813–9.

    PubMed  Google Scholar 

  161. Randler C, Engelke J. Gender differences in chronotype diminish with age: a meta-analysis based on morningness/chronotype questionnaires. Chronobiol Int. 2019;36(7):888–905. https://doi.org/10.1080/07420528.2019.1585867.

    Article  PubMed  Google Scholar 

  162. Adan A, Natale V. Gender differences in morningness–eveningness preference. Chronobiol Int. 2002;19(4):709–20. https://doi.org/10.1081/cbi-120005390.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody J. Power.

Ethics declarations

Funding

CJP is supported by an Australian Government Research Training Program Scholarship. No sources of external funding were used in preparing this review.

Conflict of interest

All authors declare they have no conflicts of interest relevant to the content of this review.

Data availability

Data sharing is not applicable to this article as no datasets were generated. All supporting data are provided in text or within the tables of this review.

Code availability

Not applicable.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions

CJP, JLF, VJD, and ATS conceptualized the review. CJP wrote the first draft of the manuscript. JLF, KJES, AMB, VJD, and ATS revised the original manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Power, C.J., Fox, J.L., Elliott-Sale, K.J. et al. Waking Up to the Issue! Research Inattention and Sex-Related Differences Warrant More Sleep Studies in Female Athletes. Sports Med 54, 565–583 (2024). https://doi.org/10.1007/s40279-023-01963-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01963-5

Navigation