Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a biologically annotated brain connectome

Abstract

The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes — such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics — can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constructing an annotated connectome.
Fig. 2: Architectural features of annotated connectomes.
Fig. 3: Annotation-enhanced models of the brain.
Fig. 4: Annotation similarity networks.

Similar content being viewed by others

Data availability

Data used to generate Fig. 1 are available in the neuromaps toolbox (https://netneurolab.github.io/neuromaps/ (ref. 35)) and the Allen Human Brain Atlas35,44. Synthetic data were used to generate Fig. 2. Figure 3 is a conceptual illustration and is not based on real data. Data used to generate Fig. 4 can be found at https://github.com/netneurolab/hansen_many_networks and the Human Connectome Project204,211.

References

  1. DeWeerdt, S. How to map the brain. Nature 571, S6 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Sporns, O. Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Passingham, R. E., Stephan, K. E. & Kötter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Mars, R. B. et al. Whole brain comparative anatomy using connectivity blueprints. eLife 7, e35237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mars, R. B., Passingham, R. E. & Jbabdi, S. Connectivity fingerprints: from areal descriptions to abstract spaces. Trends Cogn. Sci. 22, 1026–1037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hilgetag, C. C. & Kaiser, M. Clustered organization of cortical connectivity. Neuroinformatics 2, 353–360 (2004).

    Article  PubMed  Google Scholar 

  10. Sporns, O., Honey, C. J. & Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2, e1049 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Den Heuvel, M. P., Kahn, R. S., Goñi, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heuvel, M. P. & van den, Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  13. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    Article  PubMed  Google Scholar 

  15. Barsotti, E., Correia, A. & Cardona, A. Neural architectures in the light of comparative connectomics. Curr. Opin. Neurobiol. 71, 139–149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. White, J. G. et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Chiang, A. S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Worrell, J. C., Rumschlag, J., Betzel, R. F., Sporns, O. & Mišić, B. Optimized connectome architecture for sensory-motor integration. Netw. Neurosci. 1, 415–430 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bota, M., Sporns, O. & Swanson, L. W. Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl Acad. Sci. USA 112, E2093–E2101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rubinov, M., Ypma, R. J., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scannell, J. W., Blakemore, C. & Young, M. P. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Reus M. A. & van den Heuvel M. P. Rich club organization and intermodule communication in the cat connectome. J. Neurosci. 33, 12929–12939 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beul, S. F., Grant, S. & Hilgetag, C. C. A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct. Funct. 220, 3167–3184 (2015).

    Article  PubMed  Google Scholar 

  27. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Majka, P. et al. Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J. Comp. Neurol. 524, 2161–2181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. Q., Zheng, Y. Q. & Misic, B. Network topology of the marmoset connectome. Netw. Neurosci. 4, 1181–1196 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

    Article  PubMed  Google Scholar 

  31. Heuvel, M. P. & van den, Yeo, B. T. A spotlight on bridging microscale and macroscale human brain. architecture. Neuron 93, 1248–1251 (2017).

    Article  PubMed  Google Scholar 

  32. García-Cabezas, M. Á., Zikopoulos, B. & Barbas, H. The structural model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct. Funct. 224, 985–1008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Essen, D. C. et al. The brain analysis library of spatial maps and atlases (BALSA) database. Neuroimage 144, 270–274 (2017).

    Article  PubMed  Google Scholar 

  34. Gorgolewski, K. J. et al. NeuroVault.org: a repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. Neuroimage 124, 1242–1244 (2016).

    Article  PubMed  Google Scholar 

  35. Markello R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods. 19, 1472–1479 (2022). This paper accompanies a toolbox for accessing and analysing many different brain annotations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  37. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connect. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silva Castanheira, J., da, Orozco Perez, H. D., Misic, B. & Baillet, S. Brief segments of neurophysiological activity enable individual differentiation. Nat. Commun. 12, 5713 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Amico, E. & Goñi, J. The quest for identifiability in human functional connectomes. Sci. Rep. 8, 8254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Suarez, L. E. et al. A connectomics-based taxonomy of mammals. eLife 11, e78635 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zilles, K. & Palomero-Gallagher, N. Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front. Neuroanat. 11, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beliveau, V. et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nørgaard, M. et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine binding site of GABAA receptors. Neuroimage 232, 117878 (2021).

    Article  PubMed  Google Scholar 

  49. Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen, J. Y. et al. Correspondence between gene expression and neurotransmitter receptor and transporter density in the human brain. Neuroimage 264, 119671 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Froudist-Walsh, S. et al. Gradients of neurotransmitter receptor expression in the macaque cortex. Nat. Neurosci. 26, 1281–1294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Vidal-Pineiro, D. et al. Cellular correlates of cortical thinning throughout the lifespan. Sci. Rep. 10, 21803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014). This paper demonstrates links between macroscale connectome features (for example, number of connections) and micro-architecture (for example, dendritic spine count).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor cortices. PLoS Biol. 18, e3000678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain. connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Bethlehem, R. A. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei, Y. et al. Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nat. Commun. 10, 4839 (2019). This study shows that brain regions that are anatomically connected tend to have similar laminar differentiation.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xu, T. et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223, 117346 (2020).

    Article  PubMed  Google Scholar 

  67. Reardon, P. et al. Normative brain size variation and brain shape diversity in humans. Science 360, 1222–1227 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaishnavi, S. N. et al. Regional aerobic glycolysis in the human brain. Proc. Natl Acad. Sci. USA 107, 17757–17762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castrillon G. et al. An energy costly architecture of neuromodulators for human brain. evolution and cognition. Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538209 (2023).

  70. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shafiei, G. et al. Topographic gradients of intrinsic dynamics across neocortex. eLife 9, e62116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao, R., Brink, R. L., van den, Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 9, e61277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frauscher, B. et al. Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain 141, 1130–1144 (2018).

    Article  PubMed  Google Scholar 

  74. Wang, X. J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020). This paper is a comprehensive review of how the brain can be topographically annotated using features of intrinsic dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, B., Chen, Y., Chen, K., Lu, H. & Zhang, Z. From local properties to brain-wide organization: a review of intraregional temporal features in functional magnetic resonance imaging data. Hum. Brain Mapp. 44, 3926–3938 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Voytek, J. B. & Voytek, B. Automated cognome construction and semi-automated hypothesis generation. J. Neurosci. Methods 208, 92–100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. eLife 9, e53385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hansen, J. Y. et al. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat. Commun. 13, 4682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Larivière, S. et al. The ENIGMA toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat. Methods 18, 698–700 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  83. Vértes, P. E. et al. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Scholtens, L. H., de Reus, M. A., deLange, S. C., Schmidt, R. & van den Heuvel, M. P. An MRI von Economo–Koskinas atlas. Neuroimage 170, 249–256 (2018).

    Article  PubMed  Google Scholar 

  85. Foit, N. A. et al. A whole-brain 3D myeloarchitectonic atlas: mapping the Vogt-Vogt legacy to the cortical surface. Neuroimage 263, 119617 (2022).

    Article  PubMed  Google Scholar 

  86. Ciric R. et al. TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models. Nat. Methods 19, 1568–1571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schirner, M. et al. Brain simulation as a cloud service: the virtual brain on EBRAINS. Neuroimage 251, 118973 (2022).

    Article  PubMed  Google Scholar 

  88. Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife 10, e72129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Cieslak, M. et al. QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nat. Methods 18, 775–778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adebimpe, A. et al. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat. Methods 19, 683–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).

    Article  PubMed  Google Scholar 

  93. Khambhati, A. N., Sizemore, A. E., Betzel, R. F. & Bassett, D. S. Modeling and interpreting mesoscale network dynamics. Neuroimage 180, 337–349 (2018).

    Article  PubMed  Google Scholar 

  94. Lariviere, S. et al. Microstructure-informed connectomics: enriching large-scale descriptions of healthy and diseased brains. Brain Connect. 9, 113–127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. French, L. & Pavlidis, P. Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput. Biol. 7, e1001049 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016). This paper demonstrates that connectivity between hub regions is supported by gene co-expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Arnatkeviciute, A., Fulcher, B. D., Pocock, R. & Fornito, A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. 14, e1005989 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Beul, S. F., Barbas, H. & Hilgetag, C. C. A predictive structural model of the primate connectome. Sci. Rep. 7, 43176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Beul, S. F. & Hilgetag, C. C. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. Neuroimage 189, 777–792 (2019).

    Article  PubMed  Google Scholar 

  100. Wei, Y., Scholtens, L. H., Turk, E. & Van Den Heuvel, M. P. Multiscale examination of cytoarchitectonic similarity and human brain connect. Netw. Neurosci. 3, 124–137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Seidlitz, J. et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Shafiei, G. et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biol. Psychiatry 87, 727–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Shafiei, G. et al. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain 146, 321–336 (2023).

    Article  PubMed  Google Scholar 

  104. Dipasquale, O. et al. Receptor-enriched analysis of functional connectivity by targets (REACT): a novel, multimodal analytical approach informed by PET to study the pharmacodynamic response of the brain under MDMA. Neuroimage 195, 252–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Gollo, L. L., Zalesky, A., Hutchison, R. M., Van Den Heuvel, M. & Breakspear, M. Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ramon y Cajal S. Studies on Vertebrate Neurogenesis (Blackwell Scientific, 1960).

  107. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Newman, M. E. Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).

    Article  CAS  Google Scholar 

  109. Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bazinet, V. et al. Assortative mixing in micro-architecturally annotated brain connectomes. Nat. Commun. 14, 2850 (2023). This paper formally studies the assortative mixing of multiple biological attributes across different species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rockland, K. S. & Pandya, D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179, 3–20 (1979).

    Article  CAS  PubMed  Google Scholar 

  112. Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Goulas, A., Zilles, K. & Hilgetag, C. C. Cortical gradients and laminar projections in mammals. Trends Neurosci. 41, 775–788 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Hilgetag, C. C., Beul, S. F., Albada, S. J. & van, Goulas, A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw. Neurosci. 3, 905–923 (2019). This paper reviews how cytoarchitecture guides neural wiring across species.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shine, J. M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 23, 572–583 (2019).

    Article  PubMed  Google Scholar 

  116. Barbas, H. Pattern in the laminar origin of corticocortical connections. J. Comp. Neurol. 252, 415–422 (1986).

    Article  CAS  PubMed  Google Scholar 

  117. Barbas, H. & Pandya, D. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  118. Sethi, S. S., Zerbi, V., Wenderoth, N., Fornito, A. & Fulcher, B. D. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain. Chaos 27, 047405 (2017).

    Article  PubMed  Google Scholar 

  119. Fallon, J. et al. Timescales of spontaneous fMRI fluctuations relate to structural connectivity in the brain. Netw. Neurosci. 4, 788–806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Theodoni, P. et al. Structural attributes and principles of the neocortical connectome in the marmoset monkey. Cereb. Cortex 32, 15–28 (2022).

    Article  Google Scholar 

  121. Xu, Z. et al. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun. Biol. 5, 1056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van den Heuvel, M. P., Scholtens, L. H., Barrett, L. F., Hilgetag, C. C. & de Reus, M. A. Bridging cytoarchitectonics and connectomics in human cerebral cortex. J. Neurosci. 35, 13943–13948 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Várkuti, B. et al. Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: an integrative MRI study. PLoS ONE 6, e14801 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liang, X., Zou, Q., He, Y. & Yang, Y. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc. Natl Acad. Sci. USA 110, 1929–1934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Collin, G., Sporns, O., Mandl, R. C. & Van Den Heuvel, M. P. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24, 2258–2267 (2014).

    Article  PubMed  Google Scholar 

  128. Chen, Y., Lin, Q., Liao, X., Zhou, C. & He, Y. Association of aerobic glycolysis with the structural connectome reveals a benefit–risk balancing mechanism in the human brain. Proc. Natl Acad. Sci. USA 118, e2013232118 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014). This study demonstrates that pathological grey matter lesions across multiple disorders have a higher tendency to target hub regions of brain networks.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M. P. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    Article  PubMed  Google Scholar 

  134. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H. & Evans, A. C. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51, 1126–1139 (2010).

    Article  PubMed  Google Scholar 

  137. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021). This paper reviews brain annotations and their relationship with the unimodal–transmodal hierarchy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Markello, R. D. & Misic, B. Comparing spatial null models for brain maps. Neuroimage 236, 118052 (2021).

    Article  PubMed  Google Scholar 

  140. Paquola C. et al. The unique cytoarchitecture and wiring of the human default mode network. Preprint at bioRxiv https://doi.org/10.1101/2021.11.22.469533 (2021).

  141. Demirtaş, M. et al. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron 101, 1181–1194 (2019). This study shows that dynamical models based on connectomes annotated with intracortical myelin enhance prediction of neural dynamics.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Newman, M. E. & Clauset, A. Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J. P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Vézquez-Rodríguez, B., Liu, Z. Q., Hagmann, P. & Misic, B. Signal propagation via cortical hierarchies. Netw. Neurosci. 4, 1072–1090 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Sporns, O. & Kötter, R. Motifs in brain networks. PLoS Biol. 2, e369 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Shen, K. et al. Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17465–17476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sizemore, A. E. et al. Cliques and cavities in the human connectome. J. Comput. Neurosci. 44, 115–145 (2018).

    Article  PubMed  Google Scholar 

  149. Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41, 1–14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Vázquez-Rodrı́guez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–27. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun. 10, 4747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Baum, G. L. et al. Development of structure–function coupling in human brain. networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Liu Z. Q., Shafiei G., Baillet S., & Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. NeuroImage 278, 120276 (2023).

    Article  PubMed  Google Scholar 

  154. Zamani Esfahlani, F., Faskowitz, J., Slack, J., Mišić, B. & Betzel, R. F. Local structure-function relationships in human brain. networks across the lifespan. Nat. Commun. 13, 2053 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, P. et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci. Adv. 5, eaat7854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sip, V. et al. Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics. Sci. Adv. 9, eabq7547 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kong, X. et al. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nat. Commun. 12, 6373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Froudist-Walsh, S. et al. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 109, 3500–3520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burt, J. B. et al. Transcriptomics-informed large-scale cortical model captures topography of pharmacological neuroimaging effects of LSD. eLife 10, e69320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13, 5812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Deco, G. et al. Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Shine, J. M. et al. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat. Neurosci. 24, 765–776 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Deco, G. et al. Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Sci. Adv. 7, eabf4752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deco, G. et al. How local excitation–inhibition ratio impacts the whole brain dynamics. J. Neurosci. 34, 7886–7898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wong, K. F. & Wang, X. J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Betzel, R. F. & Bassett, D. S. Generative models for network neuroscience: prospects and promise. J. R. Soc. Interface 14, 20170623 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vértes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Betzel, R. F. et al. Generative models of the human connectome. Neuroimage 124, 1054–1064 (2016).

    Article  PubMed  Google Scholar 

  169. Goulas, A., Betzel, R. F. & Hilgetag, C. C. Spatiotemporal ontogeny of brain wiring. Sci. Adv. 5, eaav9694 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Akarca, D., Vértes, P. E., Bullmore, E. T. & Astle, D. E. A generative network model of neurodevelopmental diversity in structural brain organization. Nat. Commun. 12, 4216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ji, S., Fakhry, A. & Deng, H. Integrative analysis of the connectivity and gene expression atlases in the mouse brain. Neuroimage 84, 245–253 (2014).

    Article  PubMed  Google Scholar 

  172. Kaufman, A., Dror, G., Meilijson, I. & Ruppin, E. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity. PLoS Comput. Biol. 2, e167 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wolf, L., Goldberg, C., Manor, N., Sharan, R. & Ruppin, E. Gene expression in the rodent brain is associated with its regional connectivity. PLoS Comput. Biol. 7, e1002040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Oldham, S. et al. Modeling spatial, developmental, physiological, and topological constraints on human brain connect. Sci. Adv. 8, eabm6127 (2022). This study introduces generative models in which edge placement is governed by biological rules in addition to spatial and topological rules.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Henderson, M. X. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rahayel, S. et al. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain 145, 1743–1756 (2022).

    Article  PubMed  Google Scholar 

  178. Zheng, Y. Q. et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 17, e3000495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abdelgawad, A. et al. Predicting longitudinal brain atrophy in Parkinson’s disease using a susceptible-infected-removed agent-based model. Netw. Neurosci. 2022;7:906–925.

  180. Rahayel, S. et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain 145, 3162–3178 (2022).

    Article  PubMed  Google Scholar 

  181. Xie, Y. et al. Alterations in connectome dynamics in autism spectrum disorder: a harmonized mega-and meta-analysis study using the autism brain imaging data exchange dataset. Biol. Psychiatry 91, 945–955 (2022).

    Article  PubMed  Google Scholar 

  182. Xia, M. et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol. Psychiatry 27, 1384–1393 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Roberts, J. A. et al. The contribution of geometry to the human connectome. Neuroimage 124, 379–393 (2016).

    Article  PubMed  Google Scholar 

  184. Hébert, J. M. & Fishell, G. The genetics of early telencephalon patterning: some assembly required. Nat. Rev. Neurosci. 9, 678–685 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Horvát, S. et al. Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol. 14, e1002512 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Váša, F. & Mišić, B. Null models in network neuroscience. Nat. Rev. Neurosci. 23, 493–504 (2022). This paper reviews inferential methods for disentangling the relationships between connectivity, geometry and annotations.

    Article  PubMed  Google Scholar 

  189. Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).

    Article  PubMed  Google Scholar 

  190. Breakspear, M., Brammer, M. J., Bullmore, E. T., Das, P. & Williams, L. M. Spatiotemporal wavelet resampling for functional neuroimaging data. Hum. Brain Mapp. 23, 1–25 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. Neuroimage 220, 117038 (2020).

    Article  PubMed  Google Scholar 

  192. Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc. Natl Acad. Sci. USA 115, E4880–E4889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    Article  PubMed  Google Scholar 

  194. Sorrentino, P. et al. The structural connectome constrains fast brain dynamics. eLife 10, e67400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Horwitz, B., Duara, R. & Rapoport, S. I. Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J. Cereb. Blood Flow Metab. 4, 484–499 (1984).

    Article  CAS  PubMed  Google Scholar 

  196. Evans, A. C. Networks of anatomical covariance. Neuroimage 80, 489–504 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Jamadar, S. D. et al. Metabolic and hemodynamic resting-state connectivity of the human brain: a high-temporal resolution simultaneous BOLD-fMRI and FDG-fPET multimodality study. Cereb. Cortex 31, 2855–2867 (2021).

    Article  PubMed  Google Scholar 

  198. Sala, A. et al. Brain connectomics: time for a molecular imaging perspective? Trends Cogn. Sci. 27, 353–366 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104 (2011).

    Article  PubMed  Google Scholar 

  200. Fornito, A., Arnatkeviciute, A. & Fulcher, B. D. Bridging the gap between connectome and transcriptome. Trends Cogn. Sci. 23, 34–50 (2019).

    Article  PubMed  Google Scholar 

  201. Goulas, A. et al. Cytoarchitectonic similarity is a wiring principle of the human connectome. Preprint at BioRxiv https://doi.org/10.1101/068254 (2016).

  202. Barbas, H., Hilgetag, C. C., Saha, S., Dermon, C. R. & Suski, J. L. Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci. 6, 32 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Van Den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hansen, J. Y. et al. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol. 21, e3002314 (2023). This paper systematically benchmarks and integrates seven types of annotation similarity networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hettwer, M. et al. Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat. Commun. 13, 6851 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sebenius, I. et al. Robust estimation of cortical similarity networks from brain MRI. Nat. Neurosci. 26, 1461–1471 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mansour S., Seguin C., Winkler A., Noble S., & Zalesky A. Topological cluster statistic (TCS): towards structural-connectivity-guided fMRI cluster enhancement. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2059418/v1 (2022).

  208. Cizeron, M. et al. A brainwide atlas of synapses across the mouse life span. Science 369, 270–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ding, J. et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 12, 6021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  212. Finnema, S. J. et al. Kinetic evaluation and test–retest reproducibility of [11C] UCB-j, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J. Cereb. Blood Flow Metab. 38, 2041–2052 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  214. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  215. Caeyenberghs, K., Metzler-Baddeley, C., Foley, S. & Jones, D. K. Dynamics of the human structural connectome underlying working memory training. J. Neurosci. 36, 4056–4066 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Nelson, M. C. et al. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw. Neurosci. https://doi.org/10.1162/netn_a_00330 (2023).

  217. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  218. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y. & Basser, P. J. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Alexander, D. C. et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389 (2010).

    Article  PubMed  Google Scholar 

  220. Boshkovski, T. et al. The R1-weighted connectome: complementing brain networks with a myelin-sensitive measure. Netw. Neurosci. 5, 358–372 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Stikov, N. et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118, 397–405 (2015).

    Article  PubMed  Google Scholar 

  222. Mancini, M. et al. Introducing axonal myelination in connectomics: a preliminary analysis of g-ratio distribution in healthy subjects. Neuroimage 182, 351–359 (2018).

    Article  PubMed  Google Scholar 

  223. Drakesmith, M. et al. Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage 203, 116186 (2019).

    Article  PubMed  Google Scholar 

  224. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Frässle, S. et al. Whole-brain estimates of directed connectivity for human connectomics. Neuroimage 225, 117491 (2021).

    Article  PubMed  Google Scholar 

  226. Seguin, C. et al. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111, 1391–1401 (2023).

    Article  CAS  PubMed  Google Scholar 

  227. Veit, M. J. et al. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl Acad. Sci. USA 118, e2105031118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Seguin, C., Razi, A. & Zalesky, A. Inferring neural signalling directionality from undirected structural connectomes. Nat. Commun. 10, 4289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Reus, M. A., de, Van & den Heuvel, M. P. The parcellation-based connectome: limitations and extensions. Neuroimage 80, 397–404 (2013).

    Article  PubMed  Google Scholar 

  230. Gajwani, M. et al. Can hubs of the human connectome be identified consistently with diffusion MRI? Netw. Neurosci. https://doi.org/10.1162/netn_a_00324 (2023).

  231. Dhamala, E., Jamison, K. W., Jaywant, A., Dennis, S. & Kuceyeski, A. Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults. Hum. Brain Mapp. 42, 3102–3118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Dhamala, E., Yeo, B. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article  PubMed  Google Scholar 

  233. Eickhoff, S. B., Yeo, B. T. & Genon, S. Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19, 672–686 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Gordon, E. M. et al. Precision functional mapping of individual human brain. Neuron 95, 791–807 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    Article  PubMed  Google Scholar 

  238. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Suarez, A. Luppi, F. Milisav, Z.Q. Liu, E. Ceballos, A. Farahani and M. Pourmajidian for their comments and suggestions. This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Canada Research Chair (CRC) Program, Fonds de Recherche du Quebec–Nature et Technologie (FRQNT), Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) and the Brain Canada Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V.B. and J.Y.H. researched data for the article. All authors made substantial contributions to the discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Bratislav Misic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Y. He, A. Kucyi and J. Lerch for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Annotations

Any measurements or features that can be attached to the nodes of a network, either as a unidimensional scalar or multidimensional vector.

Arealization

The developmental process by which cortical cell types and circuits come to support unique specialized functions.

Cliques and cavities

Cliques are groups of all-to-all connected nodes, and cavities are groups of mutually unconnected nodes that participate in cliques.

Community

A group of nodes densely connected with each other but sparsely connected with the rest of the network.

Connection profiles

Vectors describing the connectivity of a brain region, detailing all of its pairwise connections with other brain regions.

Hub

A region that has many connections.

Multilayer community detection

Techniques for identifying communities that simultaneously take into account multiple types of connectivity or other interactions between nodes, such as annotation similarity.

Stochastic block models

Statistical models of network organization that formally take into account both connection patterns and local node annotations.

Transmodal networks

Networks that respond to multiple sensory modalities and specialize for higher-order cognitive function, such as the salience and default networks.

Unimodal networks

Networks that specialize for one primary sensory or motor function, such as the visual and somatomotor networks.

Vertex or voxel values

The main units of brain images, representing a spatial location in the brain, defined either for a brain volume (voxel) or on the surface (vertex).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazinet, V., Hansen, J.Y. & Misic, B. Towards a biologically annotated brain connectome. Nat. Rev. Neurosci. 24, 747–760 (2023). https://doi.org/10.1038/s41583-023-00752-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00752-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing