Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Base editing of organellar DNA with programmable deaminases

Abstract

Mitochondria and chloroplasts are organelles that include their own genomes, which encode key genes for ATP production and carbon dioxide fixation, respectively. Mutations in mitochondrial DNA can cause diverse genetic disorders and are also linked to ageing and age-related diseases, including cancer. Targeted editing of organellar DNA should be useful for studying organellar genes and developing novel therapeutics, but it has been hindered by lack of efficient tools in living cells. Recently, CRISPR-free, protein-only base editors, such as double-stranded DNA deaminase toxin A-derived cytosine base editors (DdCBEs) and adenine base editors (ABEs), have been developed, which enable targeted organellar DNA editing in human cell lines, animals and plants. In this Review, we present programmable deaminases developed for base editing of organellar DNA in vitro and discuss mitochondrial DNA editing in animals, and plastid genome (plastome) editing in plants. We also discuss precision and efficiency limitations of these tools and propose improvements for therapeutic, agricultural and environmental applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The carbon cycle mediated by mitochondria and chloroplasts.
Fig. 2: The development of mitochondrial DNA base editors.
Fig. 3: Mitochondrial base editing in animals.
Fig. 4: Off-target mutations induced by mitochondrial base editors and strategies to reduce their frequency.
Fig. 5: Organellar DNA editing in plants.

Similar content being viewed by others

References

  1. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).

    CAS  PubMed  Google Scholar 

  2. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    CAS  PubMed  Google Scholar 

  3. Daniell, H., Lin, C. S., Yu, M. & Chang, W. J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    PubMed  Google Scholar 

  5. Barrera-Paez, J. D. & Moraes, C. T. Mitochondrial genome engineering coming-of-age. Trends Genet. 38, 869–880 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

    CAS  PubMed  Google Scholar 

  7. Yu-Wai-Man, P., Turnbull, D. M. & Chinnery, P. F. Leber hereditary optic neuropathy. J. Med. Genet. 39, 162–169 (2002).

    CAS  PubMed  Google Scholar 

  8. Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford Univ. Press, 2005).

  9. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    CAS  PubMed  Google Scholar 

  11. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, B., Yang, L. & Chen, J. Development and application of base editors. CRISPR J. 2, 91–104 (2019).

    PubMed  Google Scholar 

  13. Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    CAS  PubMed  Google Scholar 

  14. Yang, L. & Chen, J. A tale of two moieties: rapidly evolving CRISPR/Cas-based genome editing. Trends Biochem. Sci. 45, 874–888 (2020).

    CAS  PubMed  Google Scholar 

  15. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    CAS  PubMed  Google Scholar 

  16. Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 34, 101–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmiderer, L., Yudovich, D., Oburoglu, L., Hjort, M. & Larsson, J. Site-specific CRISPR-based mitochondrial DNA manipulation is limited by gRNA import. Sci. Rep. 12, 18687 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J. & Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. & Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: from mutator to editor. J. Genet. Genomics 44, 423–437 (2017).

    CAS  PubMed  Google Scholar 

  23. Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    CAS  PubMed  Google Scholar 

  24. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mok, B. Y. et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 40, 1378–1387 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, S. et al. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol. 23, 211 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mi, L. et al. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat. Commun. 14, 874 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, J. et al. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol. Cell 83, 1710–1724.e7 (2023).

    CAS  PubMed  Google Scholar 

  30. Lim, K., Cho, S. I. & Kim, J. S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat. Commun. 13, 366 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Willis, J. C. W., Silva-Pinheiro, P., Widdup, L., Minczuk, M. & Liu, D. R. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat. Commun. 13, 7204 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mok, Y. G. et al. Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nat. Commun. 13, 4038 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776.e12 (2022).

    CAS  PubMed  Google Scholar 

  35. Yi, Z. et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01791-y (2023).

  36. Lee, H. et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat. Commun. 12, 1190 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chol, M. et al. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J. Med. Genet. 40, 188–191 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, J. et al. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol. Ther. Nucleic Acids 27, 73–80 (2022).

    CAS  PubMed  Google Scholar 

  39. Silva-Pinheiro, P. et al. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat. Biomed. Eng. 7, 692–703 (2023).

    CAS  PubMed  Google Scholar 

  40. Qi, X. et al. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov. 7, 95 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan, L. et al. A conditional knockout rat resource of mitochondrial protein-coding genes via a DdCBE-induced premature stop codon. Sci. Adv. 9, eadf2695 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, X. et al. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov. 8, 8 (2022).

    PubMed  PubMed Central  Google Scholar 

  43. Silva-Pinheiro, P. et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat. Commun. 13, 750 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo, J. et al. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov. 7, 78 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Sabharwal et al. The FusX TALE Base Editor (FusXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo. CRISPR J. 4, 799–821 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, S., Lee, H., Baek, G. & Kim, J. S. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat. Biotechnol. 41, 378–386 (2023).

    CAS  PubMed  Google Scholar 

  47. Lei, Z. et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat. Methods 18, 643–651 (2021).

    CAS  PubMed  Google Scholar 

  48. Lei, Z. et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804–811 (2022).

    CAS  PubMed  Google Scholar 

  49. Wei, Y. et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov. 8, 27 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, L. et al. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101–110 (2023).

    CAS  PubMed  Google Scholar 

  51. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433 (2021).

    CAS  PubMed  Google Scholar 

  52. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).

    CAS  PubMed  Google Scholar 

  54. Wang, X. et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep. 31, 107723 (2020).

    CAS  PubMed  Google Scholar 

  55. Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).

    CAS  PubMed  Google Scholar 

  56. Devine, M. & Shukla, A. Altered target sites as a mechanism of herbicide resistance. Crop Prot. 19, 881–889 (2000).

    CAS  Google Scholar 

  57. Morley, S. A. & Nielsen, B. L. Plant mitochondrial DNA. Front. Biosci. 22, 1023–1032 (2017).

    CAS  Google Scholar 

  58. Maliga, P. Engineering the plastid and mitochondrial genomes of flowering plants. Nat. Plants 8, 996–1006 (2022).

    CAS  PubMed  Google Scholar 

  59. Kazama, T. et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat. Plants 5, 722–730 (2019).

    CAS  PubMed  Google Scholar 

  60. Huang, C. H. et al. Repairing TALEN-mediated double-strand break by microhomology-mediated recombination in tobacco plastids generates abundant subgenomic DNA. Plant Sci. 313, 111028 (2021).

    CAS  PubMed  Google Scholar 

  61. Kang, B. C. et al. Chloroplast and mitochondrial DNA editing in plants. Nat. Plants 7, 899–905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakazato, I. et al. Targeted base editing in the plastid genome of Arabidopsis thaliana. Nat. Plants 7, 906–913 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakazato, I. et al. Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 119, e2121177119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, R. et al. High-efficiency plastome base editing in rice with TAL cytosine deaminase. Mol. Plant. 14, 1412–1414 (2021).

    CAS  PubMed  Google Scholar 

  65. Mok, Y. G., Hong, S., Bae, S. J., Cho, S. I. & Kim, J. S. Targeted A-to-G base editing of chloroplast DNA in plants. Nat. Plants 8, 1378–1384 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Google Scholar 

  67. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    CAS  PubMed  Google Scholar 

  71. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    CAS  PubMed  Google Scholar 

  72. Tong, H. et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. 41, 1080–1084 (2023).

    CAS  PubMed  Google Scholar 

  73. Chen, L. et al. Adenine transversion editors enable precise, efficient A*T-to-C*G base editing in mammalian cells and embryos. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01821-9 (2023).

  74. Tong, H. et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci. Rev. 10, nwad143 (2023).

    PubMed  PubMed Central  Google Scholar 

  75. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353 (2016).

  77. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakazato, I., Okuno, M., Itoh, T., Tsutsumi, N. & Arimura, S. I. Characterization and development of a plastid genome base editor, ptpTALECD. Plant J. 115, 1151-1162 (2023).

    CAS  PubMed  Google Scholar 

  79. Stewart, J. B. & Chinnery, P. F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 22, 106–118 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. Han and Y. Geun Mok for preparing the figures. This work was supported by grant 2018YFA0801401 (to J.C.) from the Ministry of Science and Technology, NK2022010207 (to J.C.) from the Ministry of Agriculture and Rural Affairs and a Shanghai Municipal Education Commission (SMEC) grant to the Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine at the ShanghaiTech University. J.-S.K. is supported by NUS Medicine Synthetic Biology Translational Research Program (NUHSRO/2020/077/MSC/02/SB) and the National Research Foundation of Korea (RS-2023-00260462).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jin-Soo Kim or Jia Chen.

Ethics declarations

Competing interests

J.C. is a scientific co-founder and adviser of CorrectSequence Therapeutics, a company that uses gene-editing technologies. J.-S.K is a founder and shareholder of ToolGen, Edgene. and GreenGene, which are focused on genome editing.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Shin-Ichi Arimura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Mitomap: www.mitomap.org

Glossary

Bystander editing

Refers to the formation of unintended mutations in the editing window of a base editor.

Chloroplast transit peptide

(CTP). An N-terminal portion in a nuclear-encoded protein that directs the transport of the protein into chloroplasts. The CTP is cleaved off during the transport by a peptidase.

Interbacterial toxin

A toxin secreted from a bacterium that inhibits growth of competing bacteria.

Mitochondrial targeting sequence

(MTS). A peptide of 15–70 amino acids at the N terminus of a nuclear-encoded protein, which facilitates transport of the protein into mitochondria. The MTS is cleaved off during the transport by a peptidase.

Nickase

An enzyme that cleaves one strand of double-stranded DNA to produce a single-strand break (nick).

Phage-assisted evolution

A directed evolution methodology for protein engineering that exploits the phage life cycle in bacteria.

R-loop

A DNA–RNA hybrid structure consisting of a DNA strand hybridized with an RNA and a displaced DNA strand.

TALE arrays

Transcription activator-like effector (TALE) arrays bind to a target DNA sequence. The arrays are composed of highly homologous repeats of 34 amino acids, derived from the bacterial genus Xanthomonas.

Transfer DNA

(T-DNA). A DNA segment in a tumour-inducing plasmid, derived from agrobacterium, that is transferred to the genome of a host plant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Chen, J. Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 25, 34–45 (2024). https://doi.org/10.1038/s41580-023-00663-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00663-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing