Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 9, 2023

Catalytic membrane reactors for alkane dehydrogenation applications: an integration of catalysis and separation process

  • Subhasis Pati , Nikita Dewangan , Ashok Jangam and Sibudjing Kawi EMAIL logo

Abstract

Catalytic dehydrogenation of saturated hydrocarbons to corresponding alkenes by the release of the stoichiometric amount of hydrogen is the paramount solution for safe storage of hydrogen. The utilization of a catalytic membrane reactor for this process enhances the reaction yield beyond thermodynamic equilibrium by selectively and simultaneously removing the produced H2 during the reaction. To this end, the present review is focused on the integration of H2 permeable membranes with the catalysts for dehydrogenation of lighter alkanes for coproduction of olefins and high-purity hydrogen in a single step. Besides, this review also covers dehydrogenation of liquid organic hydrogen carriers for safe storage of hydrogen. Herein, different types of H2 perm-selective membranes used for the dehydrogenation reaction are highlighted and the effect of hydrocarbon on H2 permeation through these membranes are discussed in detail. Furthermore, the simulation studies along with the experimental investigation performed on the membrane reactors for dehydrogenation of linear and cyclic alkanes are critically reviewed to find the coherence between simulation and experimental findings. Systematic discussion is done on the different types of alkane dehydrogenation reactions and the parameters affecting the reaction performance. Finally, directions are provided to prepare a cheaper and large industrial scale membrane reactor for dehydrogenation reaction. The concept of coupling an exothermic reaction with the endothermic dehydrogenation reaction is provided as a future direction study to enhance the overall yield and energy efficiency of the integrated membrane reactor.


Corresponding author: Sibudjing Kawi, Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore, Singapore, E-mail:
Subhasis Pati: Joint first authors.

Award Identifier / Grant number: AME IRG grant (No. A1783c0016)

Award Identifier / Grant number: FRC MOE T1 /A-0009184-00-00

Award Identifier / Grant number: MOE Tier-2 grant/ R279-000-544-112)

Award Identifier / Grant number: A*STAR LCERFI Project /U2102d2011

Acknowledgments

The authors would like to kindly thank National University of Singapore (NUS) for providing and facilitating the research activities and provisions to conduct the research.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the following funding agencies for providing financial support throughout the duration of research: Agency for Science, Technology and Research (A*STAR) AME IRG grant (no. A1783c0016), and MOE Tier-2 grant (WBS: R279-000-544-112).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Abbreviations

CAGR

compound annual growth rate

CFD

computational fluid dynamics

CMR

catalytic membrane reactor

DEC

decalin

EDH

ethane dehydrogenation

FBR

fixed bed reactor

GHSV

gas hourly space velocity

HFMR

hollow fiber membrane reactors

LOHC

liquid organic hydrogen carriers

NAP

naphthalene

PBMR

packed bed membrane reactors

PDH

propane dehydrogenation

PE

poly ethylene

PFR

plug-flow type reactor

PP

poly propylene

PS

polystyrene

PVC

poly vinyl chloride

TOL

toluene

References

Abate, S., Díaz, U., Prieto, A., Gentiluomo, S., Palomino, M., Perathoner, S., Corma, A., and Centi, G. (2016). Influence of zeolite protective overlayer on the performances of pd thin film membrane on tubular asymmetric alumina supports. Ind. Eng. Chem. Res. 55: 4948–4959, https://doi.org/10.1021/acs.iecr.6b00690.Search in Google Scholar

Ahn, S.J., Yun, G.N., Takagaki, A., Kikuchi, R., and Oyama, S.T. (2018). Effects of pressure, contact time, permeance, and selectivity in membrane reactors: the case of the dehydrogenation of ethane. Sep. Purif. Technol. 194: 197–206, https://doi.org/10.1016/j.seppur.2017.11.037.Search in Google Scholar

Akamatsu, K. and Nakao, S.I. (2011). Development of membrane reactors for dehydrogenating organic chemical hydrides to supply high-purity hydrogen. J. Jpn. Pet. Inst. 54: 287–297, https://doi.org/10.1627/jpi.54.287.Search in Google Scholar

Akamatsu, K., Tago, T., Seshimo, M., and Nakao, S.I. (2015). Long-term stable h2 production from methylcyclohexane using a membrane reactor with a dimethoxydiphenylsilane-derived silica membrane prepared via chemical vapor deposition. Ind. Eng. Chem. Res. 54: 3996–4000, https://doi.org/10.1021/acs.iecr.5b00527.Search in Google Scholar

Alpha Olefin Market Size Report (2019). Share & trends analysis report by product (1-hexene, 1-octene), by application (polyethylene, detergent alcohol, synthetic lubricants), and segment forecasts, 2019–2025. Market analysis report, Report ID: 978-1-68038-356-0. Available at: https://www.grandviewresearch.com/industry-analysis/alpha-olefins-market.Search in Google Scholar

Al-Shaikhali, A.H., Jedidi, A., Cavallo, L., and Takanabe, K. (2015). Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system. Chem. Comm. 51: 12931–12934, https://doi.org/10.1039/c5cc04016g.Search in Google Scholar PubMed

Al-Shaikhali, A.H., Jedidi, A., Anjum, D.H., Cavallo, L., and Takanabe, K. (2017). Kinetics on nizn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene. ACS Catal. 7: 1592–1600, https://doi.org/10.1021/acscatal.6b03299.Search in Google Scholar

Aleksandrov, H.A., Viñes, F., Ludwig, W., Schauermann, S., and Neyman, K.M. (2013). Tuning the surface chemistry of pd by atomic c and h: a microscopic picture. Chem. Eur. J. 19: 1335–1345, https://doi.org/10.1002/chem.201201106.Search in Google Scholar PubMed

Amende, M., Kaftan, A., Bachmann, P., Brehmer, R., Preuster, P., Koch, M., Wasserscheid, P., and Libuda, J. (2016). Regeneration of lohc dehydrogenation catalysts: in-situ ir spectroscopy on single crystals, model catalysts, and real catalysts from uhv to near ambient pressure. Appl. Surf. Sci. 360: 671–683, https://doi.org/10.1016/j.apsusc.2015.11.045.Search in Google Scholar

Anand, N.S., Pati, S., Jat, R.A., Parida, S.C., and Mukerjee, S.K. (2017). Hydrogen isotope effect on thermodynamic properties of Pd0.9X0.1 (X=Cu, Ag and Au) alloys. Int. J. Hydrog. Energy 42: 3136–3141, https://doi.org/10.1016/j.ijhydene.2016.10.069.Search in Google Scholar

Anton Wein, L., Zhang, H., Urushidate, K., Miyano, M., and Izumi, Y. (2018). Optimized photoreduction of CO2 exclusively into methanol utilizing liberated reaction space in layered double hydroxides comprising zinc, copper, and gallium. Appl. Surf. Sci. 447: 687–696, https://doi.org/10.1016/j.apsusc.2018.04.046.Search in Google Scholar

Ashok, J., Pati, S., Hongmanorom, P., Tianxi, Z., Junmei, C., and Kawi, S. (2020). A review of recent catalyst advances in CO2 methanation processes. Catal. Today 356: 471–489, https://doi.org/10.1016/j.cattod.2020.07.023.Search in Google Scholar

Avila, A.M., Yu, Z., Fazli, S., Sawada, J.A., and Kuznicki, S.M. (2014). Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation. Microporous Mesoporous Mater. 190: 301–308, https://doi.org/10.1016/j.micromeso.2014.02.024.Search in Google Scholar

Bionico, https://corporate.evonik.com/en/now-things-are-getting-big-innovative-membrane-reactor-on-its-way-to-being-an-industrial-scale-128925.html.Search in Google Scholar

Bobrov, V.S., Digurov, N.G., and Skudin, V.V. (2005). Propane dehydrogenation using catalytic membrane. J. Membr. Sci. 253: 233–242, https://doi.org/10.1016/j.memsci.2004.11.037.Search in Google Scholar

Botavina, M., Barzan, C., Piovano, A., Braglia, L., Agostini, G., Martra, G., and Groppo, E. (2017). Insights into Cr/SiO2 catalysts during dehydrogenation of propane: an operando XAS investigation. Catal. Sci. Technol. 7: 1690–1700, https://doi.org/10.1039/c7cy00142h.Search in Google Scholar

Boufaden, N., Akkari, R., Pawelec, B., Fierro, J.L.G., Said Zina, M., and Ghorbel, A. (2015). Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo–SiO2 catalysts. Appl. Catal. A 502: 329–339, https://doi.org/10.1016/j.apcata.2015.05.026.Search in Google Scholar

Brückner, N., Obesser, K., Bösmann, A., Teichmann, D., Arlt, W., Dungs, J., and Wasserscheid, P. (2014). Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem 7: 229–235, https://doi.org/10.1002/cssc.201300426.Search in Google Scholar PubMed

Cao, X. (2016). Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface. RSC Adv. 6: 65524–65532, https://doi.org/10.1039/c6ra15038a.Search in Google Scholar

Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D. (2008). Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 130: 5412–5413, https://doi.org/10.1021/ja801294f.Search in Google Scholar PubMed

Chen, C.-H. and Ma, Y.H. (2010). The effect of H2S on the performance of Pd and Pd/Au composite membrane. J. Membr. Sci. 362: 535–544, https://doi.org/10.1016/j.memsci.2010.07.002.Search in Google Scholar

Chen, M., Xu, J., Su, F.Z., Liu, Y.M., Cao, Y., He, H.Y., and Fan, K.N. (2008). Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts. J. Catal. 256: 293–300, https://doi.org/10.1016/j.jcat.2008.03.021.Search in Google Scholar

Chen, S., Chang, X., Sun, G., Zhang, T., Xu, Y., Wang, Y., Pei, C., and Gong, J. (2021). Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 50: 3315–3354, https://doi.org/10.1039/d0cs00814a.Search in Google Scholar PubMed

Chen, Y.R., Tsuru, T., and Kang, D.Y. (2017). Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation. Int. J. Hydrog. Energy 42: 26296–26307, https://doi.org/10.1016/j.ijhydene.2017.08.174.Search in Google Scholar

Chrysostomou, D. and Zaera, F. (2001). Thermal chemistry of C3 allyl groups on Pt(111). J. Phys. Chem. B 105: 1003–1011, https://doi.org/10.1021/jp0028608.Search in Google Scholar

Ciavarella, P., Casanave, D., Moueddeb, H., Miachon, S., Fiaty, K., and Dalmon, J.A. (2001). Isobutane dehydrogenation in a membrane reactor: influence of the operating conditions on the performance. Catal. Today 67: 177–184, https://doi.org/10.1016/s0920-5861(01)00311-x.Search in Google Scholar

Cui, T., Fang, J., Zheng, A., Jones, F., and Reppond, A. (2000). Fabrication of microreactors for dehydrogenation of cyclohexane to benzene. Sens. Actuators B 71: 228–231, https://doi.org/10.1016/s0925-4005(00)00620-1.Search in Google Scholar

Dangwal, S., Liu, R., and Kim, S.J. (2017). High-temperature ethane dehydrogenation in microporous zeolite membrane reactor: effect of operating conditions. Chem. Eng. J. 328: 862–872, https://doi.org/10.1016/j.cej.2017.07.108.Search in Google Scholar

Das, J.K., Das, N., and Bandyopadhyay, S. (2012). Highly selective SAPO 34 membrane on surface modified clay–alumina tubular support for H2/CO2 separation. Int. J. Hydrog. Energy 37: 10354–10364, https://doi.org/10.1016/j.ijhydene.2012.03.102.Search in Google Scholar

De Cola, P.L., Gläser, R., and Weitkamp, J. (2006). Non-oxidative propane dehydrogenation over Pt–Zn-containing zeolites. Appl. Catal. A 306: 85–97, https://doi.org/10.1016/j.apcata.2006.03.028.Search in Google Scholar

Deng, L., Miura, H., Shishido, T., Wang, Z., Hosokawa, S., Teramura, K., and Tanaka, T. (2018). Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. J. Catal. 365: 277–291, https://doi.org/10.1016/j.jcat.2018.06.028.Search in Google Scholar

Dewangan, N., Ashok, J., Sethia, M., Das, S., Pati, S., Kus, H., and Kawi, S. (2019). Cobalt-based catalyst supported on different morphologies of alumina for non-oxidative propane dehydrogenation: effect of metal support interaction and lewis acidic sites. ChemCatChem 11: 4923–4934, https://doi.org/10.1002/cctc.201900924.Search in Google Scholar

Dittrich, C.J. (2020). The role of heat transfer on the feasibility of a packed-bed membrane reactor for propane dehydrogenation. Chem. Eng. J. 381: 122492, https://doi.org/10.1016/j.cej.2019.122492.Search in Google Scholar

Dong, J., Lin, Y.S., Hu, M.Z.C., Peascoe, R.A., and Payzant, E.A. (2000). Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Microporous Mesoporous Mater. 34: 241–253, https://doi.org/10.1016/s1387-1811(99)00175-4.Search in Google Scholar

Easa, J., Jin, R., and O’brien, C.P. (2020). Evolution of surface and bulk carbon species derived from propylene and their influence on the interaction of hydrogen with palladium. J. Membr. Sci. 596: 117738, https://doi.org/10.1016/j.memsci.2019.117738.Search in Google Scholar

e Silva, T.L.S. and Schmal, M. (2017). Adsorption and desorption of propane on Pd (111): a van der Waals density functional study. Energy binding sites and geometries. Surf. Sci. 664: 82–86, https://doi.org/10.1016/j.susc.2017.06.004.Search in Google Scholar

Evonik.Com. https://www.macbethproject.eu/introduction/, https://c4chemicals.evonik.com/en/romeoreactoroptimisationbymembraneenhancedoperation22809.html, https://corporate.evonik.com/Downloads/Corporate/PMs/04_200/MACBETH_in%20a%20nutshell_final_eng.pdf).Search in Google Scholar

Fang, D., Zhao, J., Li, W., Fang, X., Yang, X., Ren, W., and Zhang, H. (2015). Investigation of the characteristics and deactivation of catalytic active center of Cr-Al2O3 catalysts for isobutane dehydrogenation. J. Energy Chem. 24: 101–107, https://doi.org/10.1016/s2095-4956(15)60290-x.Search in Google Scholar

Farsi, M., Jahanmiri, A., and Rahimpour, M.R. (2012). Optimal operating condition of membrane reactors to enhance isobutene production, selectivity and hydrogen production. J. Ind. Eng. Chem. 18: 1676–1682, https://doi.org/10.1016/j.jiec.2012.03.015.Search in Google Scholar

Farsi, M., Jahanmiri, A., and Rahimpour, M.R. (2014a). Optimal conditions of isobutane dehydrogenation in radial flow moving bed hydrogen-permselective membrane reactors to enhance isobutene and hydrogen production. Chem. Eng. Process. Process Intensif. 75: 126–133, https://doi.org/10.1016/j.cep.2013.11.006.Search in Google Scholar

Farsi, M., Jahanmiri, A., and Rahimpour, M.R. (2014b). Simultaneous isobutane dehydrogenation and hydrogen production in a hydrogen-permselective membrane fixed bed reactor. Theor. Found. Chem. Eng. 48: 799–805, https://doi.org/10.1134/s0040579514060049.Search in Google Scholar

Ferreira-Aparicio, P., Rodriguez-Ramos, I., and Guerrero-Ruiz, A. (2002a). On the performance of porous Vycor membranes for conversion enhancement in the dehydrogenation of methylcyclohexane to toluene. J. Catal. 212: 182–192, https://doi.org/10.1006/jcat.2002.3786.Search in Google Scholar

Ferreira-Aparicio, P., Rodríguez-Ramos, I., and Guerrero-Ruiz, A. (2002b). Pure hydrogen production from methylcyclohexane using a new high performance membrane reactor. ChemCommun 18: 2082–2083, https://doi.org/10.1039/b205300d.Search in Google Scholar PubMed

Frank, B., Zhang, J., Blume, R., Schlögl, R., and Su, D.S. (2009). Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew. Chem. Int. Ed. 48: 6913–6917, https://doi.org/10.1002/anie.200901826.Search in Google Scholar PubMed

Gbenedio, E., Wu, Z., Hatim, I., Kingsbury, B.F.K., and Li, K. (2010). A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation. Catal. Today 156: 93–99, https://doi.org/10.1016/j.cattod.2010.04.044.Search in Google Scholar

Ghasemzadeh, K., Zeynali, R., Bahadori, F., and Basile, A. (2018). CFD analysis of Pd-Ag membrane reactor performance during ethylbenzene dehydrogenation process. Int. J. Hydrog. Energy 43: 7675–7683, https://doi.org/10.1016/j.ijhydene.2017.09.112.Search in Google Scholar

Guo, Y., Lu, G., Wang, Y., and Wang, R. (2003). Preparation and characterization of Pd–Ag/ceramic composite membrane and application to enhancement of catalytic dehydrogenation of isobutane. Sep. Purif. Technol. 32: 271–279, https://doi.org/10.1016/s1383-5866(03)00043-1.Search in Google Scholar

Hatim, M.D.I., Fazara, M.A.U., Syarhabil, A.M., and Riduwan, F. (2013). Catalytic dehydrogenation of methylcyclohexane (MCH) to toluene in a palladium/alumina hollow fibre membrane reactor. Procedia Eng. 53: 71–80, https://doi.org/10.1016/j.proeng.2013.02.012.Search in Google Scholar

Hirota, Y., Ishikado, A., Uchida, Y., Egashira, Y., and Nishiyama, N. (2013). Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane. J. Membr. Sci. 440: 134–139, https://doi.org/10.1016/j.memsci.2013.04.010.Search in Google Scholar

Hong, M., Li, S., Falconer, J.L., and Noble, R.D. (2008). Hydrogen purification using a SAPO-34 membrane. J. Membr. Sci. 307: 277–283, https://doi.org/10.1016/j.memsci.2007.09.031.Search in Google Scholar

Hu, P., Lang, W.-Z., Yan, X., Chen, X.F., and Guo, Y.J. (2018). Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction. Appl. Catal. A 553: 65–73, https://doi.org/10.1016/j.apcata.2018.01.014.Search in Google Scholar

Huang, A., Dou, W., and Caro, J. (2010). Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 132: 15562–15564, https://doi.org/10.1021/ja108774v.Search in Google Scholar PubMed

Itoh, N., Tamura, E., Hara, S., Takahashi, T., Shono, A., Satoh, K., and Namba, T. (2003). Hydrogen recovery from cyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Catal. Today 82: 119–125, https://doi.org/10.1016/s0920-5861(03)00210-4.Search in Google Scholar

Jackson, S.D., Rugmini, S., Stair, P.C., and Wu, Z. (2006). A comparison of catalyst deactivation of vanadia catalysts used for alkane dehydrogenation. Chem. Eng. J. 120: 127–132, https://doi.org/10.1016/j.cej.2006.03.014.Search in Google Scholar

Jeon, J., Kon, K.-I., Toyao, T., Shimizu, K.I., and Furukawa, S. (2019). Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem. Sci. 10: 4148–4162, https://doi.org/10.1039/c8sc05496g.Search in Google Scholar PubMed PubMed Central

Jeong, B.-H., Hasegawa, Y., Sotowa, K.I., Kusakabe, K., and Morooka, S. (2003a). Permeation of binary mixtures of benzene and saturated C4–C7 hydrocarbons through an FAU-type zeolite membrane. J. Membr. Sci. 213: 115–124, https://doi.org/10.1016/s0376-7388(02)00518-5.Search in Google Scholar

Jeong, B.-H., Sotowa, K.I., and Kusakabe, K. (2003b). Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor. J. Membr. Sci. 224: 151–158, https://doi.org/10.1016/j.memsci.2003.08.004.Search in Google Scholar

Jeong, B.H., Sotowa, K.I., and Kusakabe, K. (2004). Modeling of an FAU-type zeolite membrane reactor for the catalytic dehydrogenation of cyclohexane. Chem. Eng. J. 103: 69–75, https://doi.org/10.1016/j.cej.2004.03.007.Search in Google Scholar

Jiang, H., Cao, Z., Schirrmeister, S., Schiestel, T., and Caro, J. (2010). A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angew. Chem. Int. Ed. 49: 5656–5660, https://doi.org/10.1002/anie.201000664.Search in Google Scholar PubMed

Jung, S.H., Kusakabe, K., Morooka, S., and Kim, S.D. (2000). Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane. J. Membr. Sci. 170: 53–60, https://doi.org/10.1016/s0376-7388(99)00357-9.Search in Google Scholar

Kanezashi, M., O’brien, J., and Lin, Y.S. (2007). Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer. Microporous Mesoporous Mater. 103: 302–308, https://doi.org/10.1016/j.micromeso.2007.02.019.Search in Google Scholar

Kariya, N., Fukuoka, A., and Ichikawa, M. (2002). Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”. Appl. Catal. A 233: 91–102, https://doi.org/10.1016/s0926-860x(02)00139-4.Search in Google Scholar

Kariya, N., Fukuoka, A., Utagawa, T., Sakuramoto, M., Goto, Y., and Ichikawa, M. (2003). Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts. Appl. Catal. A 247: 247–259, https://doi.org/10.1016/s0926-860x(03)00104-2.Search in Google Scholar

Kaylor, N. and Davis, R.J. (2018). Propane dehydrogenation over supported Pt-Sn nanoparticles. J. Catal. 367: 181–193, https://doi.org/10.1016/j.jcat.2018.09.006.Search in Google Scholar

Kim, S.J., Liu, Y., Moore, J.S., Dixit, R.S., Pendergast, J.G., Sholl, D., Jones, C.W., and Nair, S. (2016a). Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors. Chem. Mater. 28: 4397–4402, https://doi.org/10.1021/acs.chemmater.6b01458.Search in Google Scholar

Kim, S.-J., Tan, S., Taborga Claure, M., Briones Gil, L., More, K.L., Liu, Y., Moore, J.S., Dixit, R.S., Pendergast, J.G., Sholl, D.S., et al.. (2016b). One-step synthesis of zeolite membranes containing catalytic metal nanoclusters. ACS Appl. Mater. Interfaces 8: 24671–24681, https://doi.org/10.1021/acsami.6b06576.Search in Google Scholar PubMed

Kong, C., Lu, J., Yang, J., and Wang, J. (2007). Catalytic dehydrogenation of ethylbenzene to styrene in a zeolite silicalite-1 membrane reactor. J. Membr. Sci. 306: 29–35, https://doi.org/10.1016/j.memsci.2007.08.018.Search in Google Scholar

Koutsonikolas, D., Kaldis, S., Zaspalis, V.T., and Sakellaropoulos, G.P. (2012). Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation. Int. J. Hydrog. Energy 37: 16302–16307, https://doi.org/10.1016/j.ijhydene.2012.02.076.Search in Google Scholar

Lai, Z., Bonilla, G., Diaz, I., Nery, J.G., Sujaoti, K., Amat, M.A., Kokkoli, E., Terasaki, O., Thompson, R.W., Tsapatsis, M., et al.. (2003). Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300: 456, https://doi.org/10.1126/science.1082169.Search in Google Scholar PubMed

Lewis, F.A. (1995). The palladium-hydrogen system: structures near phase transition and critical points. Int. J. Hydrog. Energy 20: 587–592, https://doi.org/10.1016/0360-3199(94)00113-e.Search in Google Scholar

Li, C. and Wang, G. (2021). Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 50: 4359–4381, https://doi.org/10.1039/d0cs00983k.Search in Google Scholar PubMed

Li, C., Xu, H., Bao, C., and Hou, S. (2019). Palladium membrane coated with zeolitic armor anchored by diffusion-piling to enhance performance. ACS Appl. Nano Mater. 2: 3377–3384, https://doi.org/10.1021/acsanm.9b00296.Search in Google Scholar

Li, G., Yada, K., Kanezashi, M., Yoshioka, T., and Tsuru, T. (2013). Methylcyclohexane dehydrogenation in catalytic membrane reactors for efficient hydrogen production. Ind. Eng. Chem. Res. 52: 13325–13332, https://doi.org/10.1021/ie401306q.Search in Google Scholar

Liang, W. and Hughes, R. (2005). The catalytic dehydrogenation of isobutane to isobutene in a palladium/silver composite membrane reactor. Catal. Today 104: 238–243, https://doi.org/10.1016/j.cattod.2005.03.045.Search in Google Scholar

Liu, Y., Xia, C., Wang, Q., Zhang, L., Huang, A., Ke, M., and Song, Z. (2018). Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts. Catal. Sci. Technol. 8: 4916–4924, https://doi.org/10.1039/c8cy01420e.Search in Google Scholar

Maneerung, T., Hidajat, K., and Kawi, S. (2014). Ultra-thin (<1μm) internally-coated Pd–Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation. J. Membr. Sci. 452: 127–142, https://doi.org/10.1016/j.memsci.2013.10.040.Search in Google Scholar

Maneerung, T., Hidajat, K., and Kawi, S. (2016). Triple-layer catalytic hollow fiber membrane reactor for hydrogen production. J. Membr. Sci. 514: 1–14, https://doi.org/10.1016/j.memsci.2016.03.034.Search in Google Scholar

Marković, A., Stoltenberg, D., Enke, D., Schlünder, E.U., and Seidel-Morgenstern, A. (2009a). Gas permeation through porous glass membranes: Part I. Mesoporous glasses: effect of pore diameter and surface properties. J. Membr. Sci. 336: 17–31, https://doi.org/10.1016/j.memsci.2009.02.031.Search in Google Scholar

Marković, A., Stoltenberg, D., Enke, D., Schlünder, E.U., and Seidel-Morgenstern, A. (2009b). Gas permeation through porous glass membranes: Part II: transition regime between Knudsen and configurational diffusion. J. Membr. Sci. 336: 32–41, https://doi.org/10.1016/j.memsci.2009.02.030.Search in Google Scholar

Medrano, J.A., Julián, I., García-García, F.R., Li, K., Herguido, J., and Menéndez, M. (2013). Two-zone fluidized bed reactor (TZFBR) with palladium membrane for catalytic propane dehydrogenation: experimental performance assessment. Ind. Eng. Chem. Res. 52: 3723–3731, https://doi.org/10.1021/ie303185p.Search in Google Scholar

Meng, L., Yu, X., Niimi, T., Nagasawa, H., Kanezashi, M., Yoshioka, T., and Tsuru, T. (2015). Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor. AIChE J. 61: 1628–1638, https://doi.org/10.1002/aic.14764.Search in Google Scholar

Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., and Bessarabov, D. (2019). The prospect of hydrogen storage using liquid organic hydrogen carriers. Energ. Fuels 33: 2778–2796, https://doi.org/10.1021/acs.energyfuels.9b00296.Search in Google Scholar

Mondal, A.M. and Ilias, S. (2001). Dehydrogenation of cyclohexane in a palladium-ceramic membrane reactor by equilibrium shift. Sep. Sci. Technol. 36: 1101–1116, https://doi.org/10.1081/ss-100103639.Search in Google Scholar

Montesinos, H., Julián, I., Herguido, J., and Menéndez, M. (2015). Effect of the presence of light hydrocarbon mixtures on hydrogen permeance through Pd–Ag alloyed membranes. Int. J. Hydrog. Energy 40: 3462–3471, https://doi.org/10.1016/j.ijhydene.2014.11.054.Search in Google Scholar

Nakaya, Y., Hirayama, J., Yamazoe, S., Shimizu, K.-I., and Furukawa, S. (2020a). Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 11: 2838, https://doi.org/10.1038/s41467-020-16693-9.Search in Google Scholar PubMed PubMed Central

Nakaya, Y., Miyazaki, M., Yamazoe, S., Shimizu, K.I., and Furukawa, S. (2020b). Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy. ACS Catal. 10: 5163–5172, https://doi.org/10.1021/acscatal.0c00151.Search in Google Scholar

Niimi, T., Nagasawa, H., Kanezashi, M., Yoshioka, T., Ito, K., and Tsuru, T. (2014). Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation. J. Membr. Sci. 455: 375–383, https://doi.org/10.1016/j.memsci.2014.01.003.Search in Google Scholar

Oda, K., Akamatsu, K., Sugawara, T., Kikuchi, R., Segawa, A., and Nakao, S.I. (2010). Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind. Eng. Chem. Res. 49: 11287–11293, https://doi.org/10.1021/ie101210x.Search in Google Scholar

Okada, Y., Sasaki, E., Watanabe, E., Hyodo, S., and Nishijima, H. (2006). Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int. J. Hydrog. Energy 31: 1348–1356, https://doi.org/10.1016/j.ijhydene.2005.11.014.Search in Google Scholar

Pati, S., Jat, R.A., Mukerjee, S.K., and Parida, S.C. (2015). Hydrogen isotope effect on thermodynamic and kinetics of hydrogen/deuterium absorption–desorption in Pd0.77Ag0.10Cu0.13 Alloy. J. Phys. Chem. C 119: 10314–10320, https://doi.org/10.1021/acs.jpcc.5b03031.Search in Google Scholar

Pati, S., Jat, R.A., Mukerjee, S.K., and Parida, S.C. (2016). X-ray diffraction study of thermal parameters of Pd, Pd–Ag and Pd–Ag–Cu alloys as hydrogen purification membrane materials. Phys. B 484: 42–47, https://doi.org/10.1016/j.physb.2015.12.048.Search in Google Scholar

Pati, S., Jat, R.A., Anand, N.S., Derose, D.J., Karn, K.N., Mukerjee, S.K., and Parida, S.C. (2017). Pd-Ag-Cu dense metallic membrane for hydrogen isotope purification and recovery at low pressures. J. Membr. Sci. 522: 151–158, https://doi.org/10.1016/j.memsci.2016.09.025.Search in Google Scholar

Pati, S., Jangam, A., Wang, Z., Dewangan, N., Wai, M.H., and Kawi, S. (2019). Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: methane suppression. Chem. Eng. J. 362: 116–125, https://doi.org/10.1016/j.cej.2018.12.112.Search in Google Scholar

Pati, S., Ashok, J., Dewangan, N., Chen, T., and Kawi, S. (2020a). Ultra-thin (∼1 μm) Pd–Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications. J. Membr. Sci. 595: 117496, https://doi.org/10.1016/j.memsci.2019.117496.Search in Google Scholar

Pati, S., Dewangan, N., Wang, Z., Jangam, A., and Kawi, S. (2020b). Nanoporous zeolite-A sheltered pd-hollow fiber catalytic membrane reactor for propane dehydrogenation. ACS Appl. Nano Mater. 3: 6675–6683, https://doi.org/10.1021/acsanm.0c01131.Search in Google Scholar

Pati, S., Trimbake, S., Vashistha, M., and Sharma, P. (2021). Tailoring the activation behaviour and oxide resistant properties of TiFe alloys by doping with Mn. Int. J. Hydrog. Energy 46: 34830–34838, https://doi.org/10.1016/j.ijhydene.2021.08.041.Search in Google Scholar

Peters, T.A., Liron, O., Tschentscher, R., Sheintuch, M., and Bredesen, R. (2016a). Investigation of Pd-based membranes in propane dehydrogenation (PDH) processes. Chem. Eng. J. 305: 191–200, https://doi.org/10.1016/j.cej.2015.09.068.Search in Google Scholar

Peters, T.A., Polfus, J.M., Van Berkel, F.P.F., and Bredesen, R. (2016b). Interplay between propylene and H2S co-adsorption on the H2 flux characteristics of Pd-alloy membranes employed in propane dehydrogenation (PDH) processes. Chem. Eng. J. 304: 134–140, https://doi.org/10.1016/j.cej.2016.06.065.Search in Google Scholar

Ping, H., Kou, Z., Xu, G., and Wu, S. (2016). Deactivation and regeneration of Raney-Ni catalyst during multiphase dehydrogenation of cyclohexane. J. Environ. Chem. Eng. 4: 3253–3259, https://doi.org/10.1016/j.jece.2016.06.033.Search in Google Scholar

Preuster, P., Papp, C., and Wasserscheid, P. (2017). Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50: 74–85, https://doi.org/10.1021/acs.accounts.6b00474.Search in Google Scholar PubMed

Qi, H., Han, J., Xu, N., and Bouwmeester, H.J.M. (2010). Hybrid organic–inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide. ChemSusChem 3: 1375–1378, https://doi.org/10.1002/cssc.201000242.Search in Google Scholar PubMed

Qi, S., Yue, J., Li, Y., Huang, J., Yi, C., and Yang, B. (2014). Replacing platinum with tungsten carbide for decalin dehydrogenation. Catal. Lett. 144: 1443–1449, https://doi.org/10.1007/s10562-014-1284-7.Search in Google Scholar

Ren, G.-Q., Pei, G.-X., Ren, Y.-J., Liu, K.-P., Chen, Z.-Q., Yang, J.-Y., Su, Y., Liu, X.-Y., Li, W.-Z., and Zhang, T. (2018). Effect of group IB metals on the dehydrogenation of propane to propylene over anti-sintering Pt/MgAl2O4. J. Catal. 366: 115–126, https://doi.org/10.1016/j.jcat.2018.08.001.Search in Google Scholar

Ricca, A., Palma, V., Iaquaniello, G., Palo, E., and Salladini, A. (2017). Highly selective propylene production in a membrane assisted catalytic propane dehydrogenation. Chem. Eng. J. 330: 1119–1127, https://doi.org/10.1016/j.cej.2017.08.064.Search in Google Scholar

Rimaz, S., Chen, L., Monzón, A., Kawi, S., and Borgna, A. (2020). Enhanced selectivity and stability of Pt-Ge/Al2O3 catalysts by Ca promotion in propane dehydrogenation. Chem. Eng. J. 405: 126656, https://doi.org/10.1016/j.cej.2020.126656.Search in Google Scholar

Rochlitz, L., Searles, K., Alfke, J., Zemlyanov, D., Safonova, O.V., and Copéret, C. (2020). Silica-supported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance. Chem. Sci. 11: 1549–1555, https://doi.org/10.1039/c9sc05599a.Search in Google Scholar PubMed PubMed Central

Salaeva, A.A., Salaev, M.A., Vodyankina, O.V., and Mamontov, G.V. (2019). Synergistic effect of Cu and Zn modifiers on the activity of CrOx/Al2O3 catalysts in isobutane dehydrogenation. Appl. Catal. A 581: 82–90, https://doi.org/10.1016/j.apcata.2019.05.018.Search in Google Scholar

Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114: 10613–10653, https://doi.org/10.1021/cr5002436.Search in Google Scholar PubMed

Schäfer, R., Noack, M., Kölsch, P., Thomas, S., Seidel-Morgenstern, A., and Caro, J. (2001). Development of a H2-selective SiO2-membrane for the catalytic dehydrogenation of propane. Sep. Purif. Technol. 25: 3–9, https://doi.org/10.1016/s1383-5866(01)00085-5.Search in Google Scholar

Searles, K., Siddiqi, G., Safonova, O.V., and Coperet, C. (2017). Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts. Chem. Sci. 8: 2661–2666, https://doi.org/10.1039/c6sc05178b.Search in Google Scholar PubMed PubMed Central

Semidey-Flecha, L., Ling, C., and Sholl, D.S. (2010). Detailed first-principles models of hydrogen permeation through PdCu-based ternary alloys. J. Membr. Sci. 362: 384–392, https://doi.org/10.1016/j.memsci.2010.06.063.Search in Google Scholar

Seshimo, M., Akamatsu, K., Furuta, S., and Nakao, S.-I. (2013). H2 Purification durability of dimethoxydiphenylsilane-derived silica membranes with H2–toluene mixtures. Ind. Eng. Chem. Res. 52: 17257–17262, https://doi.org/10.1021/ie4024512.Search in Google Scholar

Shao, C.-T., Lang, W.-Z., Yan, X., and Guo, Y.-J. (2017). Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount. RSC Adv. 7: 4710–4723, https://doi.org/10.1039/c6ra27204e.Search in Google Scholar

She, Y., Han, J., and Ma, Y.H. (2001). Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene. Catal. Today 67: 43–53, https://doi.org/10.1016/s0920-5861(01)00280-2.Search in Google Scholar

Sheintuch, M. and Nekhamkina, O. (2018). Architecture alternatives for propane dehydrogenation in a membrane reactor. Chem. Eng. J. 347: 900–912, https://doi.org/10.1016/j.cej.2018.04.137.Search in Google Scholar

Shelepova, E.V., Vedyagin, A.A., Mishakov, I.V., and Noskov, A.S. (2011). Mathematical modeling of the propane dehydrogenation process in the catalytic membrane reactor. Chem. Eng. J. 177: 151–157, https://doi.org/10.1016/j.cej.2011.06.048.Search in Google Scholar

Shelepova, E.V., Vedyagin, A.A., Mishakov, I.V., and Noskov, A.S. (2015). Simulation of hydrogen and propylene coproduction in catalytic membrane reactor. Int. J. Hydrog. Energy 40: 3592–3598, https://doi.org/10.1016/j.ijhydene.2014.09.004.Search in Google Scholar

Shi, Y., Li, X., Rong, X., Gu, B., Wei, H., Zhao, Y., Wang, W., and Sun, C. (2020). Effect of aging temperature of support on catalytic performance of PtSnK/Al2O3 propane dehydrogenation catalyst. Catal. Lett. 150: 2283–2293, https://doi.org/10.1007/s10562-020-03115-0.Search in Google Scholar

Sibudjing Kawi, K.H. and Thawatchai, M. (2016). Catalytic hollow fibers, United States Patent number US9272269B2.Search in Google Scholar

Sibudjing Kawi, K.H., Oemar, U., Jangam, A., Ang, M.L., Kathiraser, Y., and Wang, Z. (2017). Catalytic membrane system for converting biomass to hydrogen, United States patent number US11008524B2.Search in Google Scholar

Sun, G.B., Hidajat, K., and Kawi, S. (2006). Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: high permeance and selectivity. J. Membr. Sci. 284: 110–119, https://doi.org/10.1016/j.memsci.2006.07.015.Search in Google Scholar

Teichmann, D., Arlt, W., Wasserscheid, P., and Freymann, R. (2011). A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ. Sci. 4: 2767–2773, https://doi.org/10.1039/c1ee01454d.Search in Google Scholar

Ten Hove, M., Luiten-Olieman, M.W.J., Huiskes, C., Nijmeijer, A., and Winnubst, L. (2017). Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes. Sep. Purif. Technol. 189: 48–53, https://doi.org/10.1016/j.seppur.2017.07.045.Search in Google Scholar

Tew, M.W., Nachtegaal, M., Janousch, M., Huthwelker, T., and Van Bokhoven, J.A. (2012). The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS. Phys. Chem. Chem. Phys. 14: 5761–5768, https://doi.org/10.1039/c2cp24068h.Search in Google Scholar PubMed

Tian, Y.-P., Liu, X.-M., Rood, M.J., and Yan, Z.-F. (2017). Study of coke deposited on a VOx-K2O/γ-Al2O3 catalyst in the non-oxidative dehydrogenation of isobutane. Appl. Catal., A 545: 1–9, https://doi.org/10.1016/j.apcata.2017.07.022.Search in Google Scholar

Van Den Bergh, J., Gücüyener, C., Gascon, J., and Kapteijn, F. (2011). Isobutane dehydrogenation in a DD3R zeolite membrane reactor. Chem. Eng. J. 166: 368–377, https://doi.org/10.1016/j.cej.2010.11.021.Search in Google Scholar

Wang, L., Murata, K., and Inaba, M. (2003). Production of pure hydrogen and more valuable hydrocarbons from ethane on a novel highly active catalyst system with a Pd-based membrane reactor. Catal. Today 82: 99–104, https://doi.org/10.1016/s0920-5861(03)00207-4.Search in Google Scholar

Wang, G., Zhu, X., and Li, C. (2020a). Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chem. Rec. 20: 604, https://doi.org/10.1002/tcr.201900090.Search in Google Scholar PubMed

Wang, Z., Xu, J., Pati, S., Chen, T., Deng, Y., Dewangan, N., Meng, L., Lin, J.Y.S., and Kawi, S. (2020b). High H2 permeable SAPO-34 hollow fiber membrane for high temperature propane dehydrogenation application. AIChE J. 66: e16278, https://doi.org/10.1002/aic.16278.Search in Google Scholar

Wang, X., Zou, Y., Meng, B., Tan, X., Wang, S., and Liu, S. (2018). Catalytic palladium membrane reactors for one-step benzene hydroxylation to phenol. J. Membr. Sci. 563: 864–872, https://doi.org/10.1016/j.memsci.2018.06.058.Search in Google Scholar

Wang, Z., Li, Z., Cui, Y., Chen, T., Hu, J., and Kawi, S. (2019). Highly efficient NO decomposition via dual-functional catalytic perovskite hollow fiber membrane reactor coupled with partial oxidation of methane at medium-low temperature. Environ. Sci. Technol. 53: 9937–9946, https://doi.org/10.1021/acs.est.9b02530.Search in Google Scholar PubMed

Weyten, H., Luyten, J., Keizer, K., Willems, L., and Leysen, R. (2000). Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor. Catal. Today 56: 3–11, https://doi.org/10.1016/s0920-5861(99)00257-6.Search in Google Scholar

Wilde, M., Fukutani, K., Ludwig, W., Brandt, B., Fischer, J.-H., Schauermann, S., and Freund, H.-J. (2008). Influence of carbon deposition on the hydrogen distribution in pd nanoparticles and their reactivity in olefin hydrogenation. Angew. Chem., Int. Ed. 47: 9289–9293, https://doi.org/10.1002/anie.200801923.Search in Google Scholar PubMed

Wu, Z., Hatim, I.M.D., Kingsbury, B.F.K., Gbenedio, E., and Li, K. (2009). A novel inorganic hollow fiber membrane reactor for catalytic dehydrogenation of propane. AIChE J. 55: 2389–2398, https://doi.org/10.1002/aic.11864.Search in Google Scholar

Wunsch, A., Gapp, E., Peters, T., and Pfeifer, P. (2021). Impact of product gas impurities from dehydrogenation of perhydro-dibenzyltoluene on the performance of a 10 μm PdAg-membrane. J. Membr. Sci. 628: 119094, https://doi.org/10.1016/j.memsci.2021.119094.Search in Google Scholar

Xia, Z., Liu, H., Lu, H., Zhang, Z., and Chen, Y. (2017a). Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation. Appl. Surf. Sci. 422: 905–912, https://doi.org/10.1016/j.apsusc.2017.04.245.Search in Google Scholar

Xia, Z., Lu, H., Liu, H., Zhang, Z., and Chen, Y. (2017b). Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: effect of copper addition. Catal. Commun. 90: 39–42, https://doi.org/10.1016/j.catcom.2016.10.036.Search in Google Scholar

Xu, X., Yang, W., Liu, J., Chen, X., Lin, L., Stroh, N., and Brunner, H. (2000). Synthesis and gas permeation properties of an NaA zeolite membrane. Chem. Commun. 603–604, https://doi.org/10.1039/b000478m.Search in Google Scholar

Yu, J., Qi, C., Zhang, J., Bao, C., and Xu, H. (2015). Synthesis of a zeolite membrane as a protective layer on a metallic Pd composite membrane for hydrogen purification. J. Mater. Chem. A. 3: 5000–5006, https://doi.org/10.1039/c4ta06463a.Search in Google Scholar

Yu, M., Funke, H.H., Noble, R.D., and Falconer, J.L. (2011). H2 separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 133: 1748–1750, https://doi.org/10.1021/ja108681n.Search in Google Scholar PubMed

Zhang, K. and Way, J.D. (2017). Palladium-copper membranes for hydrogen separation. Sep. Purif. Technol. 186: 39–44, https://doi.org/10.1016/j.seppur.2017.05.039.Search in Google Scholar

Zhang, L., Xu, G., An, Y., Chen, C., and Wang, Q. (2006). Dehydrogenation of methyl-cyclohexane under multiphase reaction conditions. Int. J. Hydrog. Energy 31: 2250–2255, https://doi.org/10.1016/j.ijhydene.2006.02.001.Search in Google Scholar

Zhang, X.-L., Akamatsu, K., and Nakao, S.-I. (2016). Hydrogen separation in hydrogen–methylcyclohexane–toluene gaseous mixtures through triphenylmethoxysilane-derived silica membranes prepared by chemical vapor deposition. Ind. Eng. Chem. Res. 55: 5395–5402, https://doi.org/10.1021/acs.iecr.6b00898.Search in Google Scholar

Zhang, Y., Zhou, Y., Shi, J., Sheng, X., Duan, Y., Zhou, S., and Zhang, Z. (2012). Effect of zinc addition on catalytic properties of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process. Technol. 96: 220–227, https://doi.org/10.1016/j.fuproc.2011.12.040.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revce-2022-0006).


Received: 2022-04-03
Accepted: 2023-03-15
Published Online: 2023-08-09
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2022-0006/html
Scroll to top button