Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry

Abstract

Background

The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap.

Objectives

Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies.

Methods/Results

PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated.

Impact statement

The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no specific data available this effort. Any data available would be through the referenced work.

References

  1. Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, DeWitt JC, Knappe DR, et al. Scientific basis for managing PFAS as a chemical class. Environ Sci Technol Lett. 2020;7:532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Y, D’Agostino LA, Qu G, Jiang G, Martin JW. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly-and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem. 2019;121:115420.

    Article  CAS  Google Scholar 

  3. Dulio V, Koschorreck J, Van Bavel B, Van den Brink P, Hollender J, Munthe J, et al. The NORMAN association and the European partnership for chemicals risk assessment (PARC): let’s cooperate!. Environ Sci Eur. 2020;32:1–11.

    Article  Google Scholar 

  4. Schymanski EL, Kondić T, Neumann S, Thiessen PA, Zhang J, Bolton EE. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminformatics. 2021;13:1–15.

    Article  Google Scholar 

  5. USEPA. U.S.E.P.A. PFOA Stewardship Program. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program (2023).

  6. Government of Canada. Perfluorocarboxylic acids and their precursors: environmental performance agreement overview. 2010.

  7. The Commission of the European Communities. Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities. 2002;221:8–36.

  8. National Development and Reform Commission, P. s. R. o. C. Catalogue for the Guidance of Industrial Structure Adjustment (2011 version). 2011.

  9. Ministry of Ecology and Environment of the People’s Republic of China. Announcement on the prohibition of the production, circulation, use, import and export of persistent organic pollutants including Lindane, in Chinese. 2019.

  10. Wang Z, Cousins IT, Scheringer M, Hungerbühler K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int. 2013;60:242–8.

    Article  CAS  PubMed  Google Scholar 

  11. ECHA. E. C. A., Registration Dossier for Difluoro{[2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4-yl]oxy}acetic acid. 2022.

  12. Strynar M, Dagnino S, McMahen R, Liang S, Lindstrom A, Andersen E, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environ Sci Technol. 2015;49:11622–30.

    Article  CAS  PubMed  Google Scholar 

  13. McCord J, Strynar M. Identification of per-and polyfluoroalkyl substances in the Cape Fear River by high resolution mass spectrometry and nontargeted screening. Environ Sci Technol. 2019;53:4717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scheringer M, Trier X, Cousins IT, de Voogt P, Fletcher T, Wang Z, et al. Helsingør statement on poly-and perfluorinated alkyl substances (PFASs). Chemosphere. 2014;114:337–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bowman JS. Fluorotechnology is critical to modern life: the FluoroCouncil counterpoint to the Madrid Statement. Environ Health Perspect. 2015;123:A112–3.

    PubMed  PubMed Central  Google Scholar 

  16. Balogh MP. Debating resolution and mass accuracy. LC-GC North Am. 2004;22:118–26.

    CAS  Google Scholar 

  17. Berendsen BJ, Stolker LA, Nielen MW. The (un) certainty of selectivity in liquid chromatography tandem mass spectrometry. J Am Soc Mass Spectrom. 2012;24:154–63.

    Article  PubMed  Google Scholar 

  18. Washington JW, Rosal CG, Ulrich EM, Jenkins TM. Use of carbon isotopic ratios in nontargeted analysis to screen for anthropogenic compounds in complex environmental matrices. J Chromatogr A. 2019;1583:73–9.

    Article  CAS  PubMed  Google Scholar 

  19. Patiny L, Borel A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J Chem Inf Model. 2013;53:1223–8.

  20. Pieke EN, Granby K, Trier X, Smedsgaard J. A framework to estimate concentrations of potentially unknown substances by semi-quantification in liquid chromatography electrospray ionization mass spectrometry. Anal Chim Acta. 2017;975:30–41.

    Article  CAS  PubMed  Google Scholar 

  21. McCord JP, Groff LC II, Sobus JR. Quantitative non-targeted analysis: bridging the gap between contaminant discovery and risk characterization. Environ Int. 2022;158:107011.

    Article  PubMed  Google Scholar 

  22. Schymanski E, Jeon J, Gulde R, Fenner K, Ruff M, Singer H, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 2014;48:2097–8.

  23. Charbonnet JA, McDonough CA, Xiao F, Schwichtenberg T, Cao D, Kaserzon S, et al. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environ Sci Technol Lett. 2022;9:473–81.

  24. Trier X, Nielsen NJ, Christensen JH. Structural isomers of polyfluorinated di-and tri-alkylated phosphate ester surfactants present in industrial blends and in microwave popcorn bags. Environ Sci Pollut Res. 2011;18:1422–32.

    Article  CAS  Google Scholar 

  25. Trier X, Granby K, Christensen JH. Tools to discover anionic and nonionic polyfluorinated alkyl surfactants by liquid chromatography electrospray ionisation mass spectrometry. J Chromatogr A. 2011;1218:7094–104.

    Article  CAS  PubMed  Google Scholar 

  26. Skibiński R, Trawiński J. Application of an untargeted chemometric strategy in the impurity profiling of pharmaceuticals: an example of amisulpride. J Chromatogr Sci. 2017;55:309–15.

    Article  PubMed  Google Scholar 

  27. McEachran AD, Mansouri K, Grulke C, Schymanski EL, Ruttkies C, Williams AJ. “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminformatics. 2018;10:1–16.

    Article  Google Scholar 

  28. McEachran AD, Balabin I, Cathey T, Transue TR, Al-Ghoul H, Grulke C, et al. Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns. Sci Data. 2019;6:1–9.

    Article  Google Scholar 

  29. Groff LC 2nd, Grossman JN, Kruve A, Minucci JM, Lowe CN, McCord JP, et al. Uncertainty estimation strategies for quantitative non-targeted analysis. Anal Bioanal Chem. 2022;414:4919–33.

  30. McCord J, Newton S, Strynar M. Validation of quantitative measurements and semi-quantitative estimates of emerging perfluoroethercarboxylic acids (PFECAs) and hexfluoroprolyene oxide acids (HFPOAs). J Chromatogr A. 2018;1551:52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulrich EM, Sobus JR, Grulke CM, Richard AM, Newton SR, Strynar MJ, et al. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem. 2019;411:853–66.

    Article  CAS  PubMed  Google Scholar 

  32. Fisher CM, Peter KT, Newton SR, Schaub AJ, Sobus JR. Approaches for assessing performance of high-resolution mass spectrometry–based non-targeted analysis methods. Anal Bioanal Chem. 2022;414:6455–71.

  33. Schulze B, Jeon Y, Kaserzon S, Heffernan AL, Dewapriya P, O’Brien J, et al. An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC Trends Anal Chem. 2020;133:116063.

    Article  CAS  Google Scholar 

  34. Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics. 2007;8:1–20.

    Article  Google Scholar 

  35. Wang Z, Buser AM, Cousins IT, Demattio S, Drost W, Johansson O, et al. A new OECD definition for per-and polyfluoroalkyl substances. Environ Sci Technol. 2021;55:15575–8.

    Article  CAS  PubMed  Google Scholar 

  36. Myers AL, Jobst KJ, Mabury SA, Reiner EJ. Using mass defect plots as a discovery tool to identify novel fluoropolymer thermal decomposition products. J Mass Spectrom. 2014;49:291–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. Simplifying nontargeted analysis of PFAS in complex food matrixes. J AOAC Int. 2022;105:1280–7.

    Article  PubMed  Google Scholar 

  38. Zweigle J, Bugsel B, Zwiener C. Efficient PFAS prioritization in non-target HRMS data: systematic evaluation of the novel MD/Cm/C approach. Anal Bioanal Chem. 2023;415:1791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kendrick E. A mass scale based on CH2= 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem. 1963;35:2146–54.

    Article  CAS  Google Scholar 

  40. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, et al. Discovery of 40 classes of per-and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 2017;51:2047–57.

    Article  CAS  PubMed  Google Scholar 

  41. Bugsel B, Zwiener C. LC-MS screening of poly-and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis. Anal Bioanal Chem. 2020;412:4797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bugsel B, Bauer R, Herrmann F, Maier ME, Zwiener C. LC-HRMS screening of per- and polyfluorinated alkyl substances (PFAS) in impregnated paper samples and contaminated soils. Anal Bioanal Chem. 2022;414:1217–25.

    Article  CAS  PubMed  Google Scholar 

  43. Dimzon IK, Trier X, Frömel T, Helmus R, Knepper TP, De Voogt P. High resolution mass spectrometry of polyfluorinated polyether-based formulation. J Am Soc Mass Spectrom. 2016;27:309–18.

    Article  CAS  PubMed  Google Scholar 

  44. Koelmel JP, Paige MK, Aristizabal-Henao JJ, Robey NM, Nason SL, Stelben PJ, et al. Toward comprehensive per-and polyfluoroalkyl substances annotation using fluoromatch software and intelligent high-resolution tandem mass spectrometry acquisition. Anal Chem. 2020;92:11186–94.

    Article  CAS  PubMed  Google Scholar 

  45. Loos M, Singer H. Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. J Cheminformatics. 2017;9:1–11.

    Article  Google Scholar 

  46. Liu Y, Pereira ADS, Martin JW. Discovery of C5–C17 poly-and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging. Anal Chem. 2015;87:4260–8.

    Article  CAS  PubMed  Google Scholar 

  47. Yu N, Guo H, Yang J, Jin L, Wang X, Shi W, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environ Sci Technol. 2018;52:8205–14.

    Article  CAS  PubMed  Google Scholar 

  48. D’Agostino LA, Mabury SA. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 2014;48:121–9.

    Article  PubMed  Google Scholar 

  49. Mejia-Avendaño S, Munoz G, Vo Duy S, Desrosiers M, Benoı̂t P, Sauvé S, et al. Novel fluoroalkylated surfactants in soils following firefighting foam deployment during the Lac-Megantic railway accident. Environ Sci Technol. 2017;51:8313–23.

    Article  PubMed  Google Scholar 

  50. Zweigle J, Bugsel B, Zwiener C. FindPFΔS: non-target screening for PFAS─comprehensive data mining for MS2 fragment mass differences. Anal Chem. 2022;94:10788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alygizakis NA, Oswald P, Thomaidis NS, Schymanski EL, Aalizadeh R, Schulze T, et al. NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trends Anal Chem. 2019;115:129–37.

    Article  CAS  Google Scholar 

  52. Koelmel JP, Stelben P, Godri D, Qi J, McDonough CA, Dukes DA, et al. Interactive software for visualization of nontargeted mass spectrometry data—FluoroMatch visualizer. Exposome. 2022;2:osac006.

  53. Koelmel JP, Stelben P, McDonough CA, Dukes DA, Aristizabal-Henao JJ, Nason SL, et al. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Anal Bioanal Chem. 2022;414:1201–15.

    Article  CAS  PubMed  Google Scholar 

  54. Hites RA, Jobst KJ. Is nontargeted screening reproducible? Environ. Sci. Technol. 2018;52:11975–6.

  55. Backe WJ, Day TC, Field JA. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from US Military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol. 2013;47:5226–34.

    Article  CAS  PubMed  Google Scholar 

  56. Allred BM, Lang JR, Barlaz MA, Field JA. Orthogonal zirconium diol/C18 liquid chromatography–tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. J Chromatogr A. 2014;1359:202–11.

    Article  CAS  PubMed  Google Scholar 

  57. Nakayama S, Strynar MJ, Helfant L, Egeghy P, Ye X, Lindstrom AB. Perfluorinated compounds in the Cape Fear drainage basin in North Carolina. Environ Sci Technol. 2007;41:5271–6.

    Article  CAS  PubMed  Google Scholar 

  58. Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: past, present, and future. Environ Sci Technol. 2011;45:7954–61.

    Article  CAS  PubMed  Google Scholar 

  59. Strynar M, Dagnino S, Lindstrom A, Andersen E, McMillan L, Thurman M, et al. In Identification of novel polyfluorinated compounds in natural waters using accurate mass TOFMS, 33rd SETAC North America Annual Meeting. 2012. 11–15.

  60. Sun M, Arevalo E, Strynar M, Lindstrom A, Richardson M, Kearns B, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River Watershed of North Carolina. Environ Sci Technol Lett. 2016;3:415–9.

    Article  CAS  Google Scholar 

  61. Kotlarz N, McCord J, Collier D, Lea CS, Strynar M, Lindstrom AB, et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina. Environ Health Perspect. 2020;128:077005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. USEPA. UCMR 3 (2013-2015) Occurrence Data. 2015.

  63. Post GB, Louis JB, Lippincott RL, Procopio NA. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol. 2013;47:13266–75.

    Article  CAS  PubMed  Google Scholar 

  64. Prevedouros K, Cousins I, Buck R, Korzeniowski S. Sources, fate and transport of fate (Critical review). Environ Sci Technol. 2006;40:32–44.

    Article  CAS  PubMed  Google Scholar 

  65. Washington JW, Rosal CG, McCord JP, Strynar MJ, Lindstrom AB, Bergman EL, et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science. 2020;368:1103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McCord JP, Strynar MJ, Washington JW, Bergman EL, Goodrow SM. Emerging chlorinated polyfluorinated polyether compounds impacting the waters of southwestern New Jersey identified by use of nontargeted analysis. Environ Sci Technol Lett. 2020;7:903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Söhlmann R, Striegel G, Lange FT. Die Anwendung der Summenparameter EOF und AOF bei der Untersuchung der Tiefenverlagerung von Perfluoralkyl-und Polyfluoralkylverbindungen (PFAS) in belasteten Böden in Mittelbaden. Mitt Umweltchem Ökotox. 2018;24:89–91.

    Google Scholar 

  68. Janda J, Nödler K, Scheurer M, Happel O, Nürenberg G, Zwiener C, et al. Closing the gap–inclusion of ultrashort-chain perfluoroalkyl carboxylic acids in the total oxidizable precursor (TOP) assay protocol. Environ Sci Process Impacts. 2019;21:1926–35.

    Article  CAS  PubMed  Google Scholar 

  69. Muschket M, Keltsch N, Paschke H, Reemtsma T, Berger U. Determination of transformation products of per- and polyfluoroalkyl substances at trace levels in agricultural plants. J Chromatogr A. 2020;1625:461271.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Z, Lu Y, Wang T, Wang P, Li Q, Johnson AC, et al. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: spatial distribution around a mega-fluorochemical industrial park, China. Environ Int. 2016;91:69–77.

    Article  CAS  PubMed  Google Scholar 

  71. Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, et al. Multimedia distribution and transfer of per-and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China. Environ Sci Technol. 2018;52:8263–71.

    Article  CAS  PubMed  Google Scholar 

  72. Fang S, Sha B, Yin H, Bian Y, Yuan B, Cousins IT. Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China. J Hazard Mater. 2020;396:122617.

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Yu N, Zhu X, Guo H, Jiang J, Wang X, et al. Suspect and nontarget screening of per-and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park. Environ Sci Technol. 2018;52:11007–16.

    Article  CAS  PubMed  Google Scholar 

  74. USEPA. EPA CompTox Chemicals Dashboard. 2022.

  75. Newton S, McMahen R, Stoeckel JA, Chislock M, Lindstrom A, Strynar M. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environ Sci Technol. 2017;51:1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang X, Yu N, Qian Y, Shi W, Zhang X, Geng J, et al. Non-target and suspect screening of per-and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. Water Res. 2020;183:115989.

    Article  CAS  PubMed  Google Scholar 

  77. Woudneh MB, Chandramouli B, Hamilton C, Grace R. Effect of sample storage on the quantitative determination of 29 PFAS: observation of analyte interconversions during storage. Environ Sci Technol. 2019;53:12576–85.

    Article  CAS  PubMed  Google Scholar 

  78. Liberatore HK, Jackson SR, Strynar MJ, McCord JP. Solvent suitability for HFPO-DA (“GenX” parent acid) in toxicological studies. Environ Sci Technol Lett. 2020;7:477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nickerson A, Maizel AC, Kulkarni PR, Adamson DT, Kornuc JJ, Higgins CP. Enhanced extraction of AFFF-associated PFASs from source zone soils. Environ Sci Technol. 2020;54:4952–62.

    Article  CAS  PubMed  Google Scholar 

  80. Song X, Vestergren R, Shi Y, Cai Y. A matrix-correction approach to estimate the bioaccumulation potential of emerging PFASs. Environ Sci Technol. 2020;54:1005–13.

    Article  CAS  PubMed  Google Scholar 

  81. Kang Q, Li Q, Wang L, Jia Y, Zhang X, Hu J. Comment on “Suspect and nontarget screening of per-and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park”. Environ Sci Technol. 2021;55:5589–92.

    Article  CAS  PubMed  Google Scholar 

  82. Xu L, Shi Y, Li C, Song X, Qin Z, Cao D, et al. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in northern China. Environ Sci Technol. 2017;51:14173–81.

    Article  CAS  PubMed  Google Scholar 

  83. Kotthoff M, Bücking M. Four chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl substances research. Front Chem. 2018;6:103.

  84. Peter KT, Phillips AL, Knolhoff AM, Gardinali PR, Manzano CA, Miller KE, et al. Nontargeted analysis study reporting tool: a framework to improve research transparency and reproducibility. Anal Chem. 2021;93:13870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samanipour S, Martin JW, Lamoree MH, Reid MJ, Thomas KV. Optimism for nontarget analysis in environmental chemistry. Environ Sci Technol. 2019;53:5529–30.

    Article  CAS  PubMed  Google Scholar 

  86. Newton SR, Sobus JR, Ulrich EM, Singh RR, Chao A, McCord J, et al. Examining NTA performance and potential using fortified and reference house dust as part of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Anal Bioanal Chem. 2020;412:4221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin JW, Kannan K, Berger U, Voogt PD, Field J, Franklin J, et al. Peer reviewed: analytical challenges hamper perfluoroalkyl research. Environ Sci Technol. 2004;38:248A–55A.

    Article  CAS  PubMed  Google Scholar 

  88. Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345–73.

  89. Dodds JN, Hopkins ZR, Knappe DR, Baker ES. Rapid characterization of per-and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry–mass spectrometry (IMS-MS). Anal Chem. 2020;92:4427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kirkwood KI, Fleming J, Nguyen H, Reif DM, Baker ES, Belcher SM. Utilizing pine needles to temporally and spatially profile per-and polyfluoroalkyl substances (PFAS). Environ Sci Technol. 2022;56:3441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luo Y-S, Aly NA, McCord J, Strynar MJ, Chiu WA, Dodds JN, et al. Rapid characterization of emerging per-and polyfluoroalkyl substances in aqueous film-forming foams using ion mobility spectrometry–mass spectrometry. Environ Sci Technol. 2020;54:15024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Miller, H. Liberatore, G. Hagler, K. Oshima, M. Medina-Vera and E. Trentacoste for helpful comments and suggestions during the drafting of this manuscript. It has been subjected to the EPA’s administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the EPA.

Author information

Authors and Affiliations

Authors

Contributions

MS conceived this idea of this manuscript and invited other authors to participate. The initial draft was created by MS, who also served as the lead and corresponding author. The remaining authors (JM, SN, JW, KB-H, XT, YL, IKD, BB, CZ, GM) all contributed to the writing effort in an iterative method of drafts and revisions. Figures and Tables were mainly created by MS, JM, CZ and BB but contributed to by all.

Corresponding author

Correspondence to Mark Strynar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strynar, M., McCord, J., Newton, S. et al. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. J Expo Sci Environ Epidemiol 33, 575–588 (2023). https://doi.org/10.1038/s41370-023-00578-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-023-00578-2

Keywords

This article is cited by

Search

Quick links