1932

Abstract

Fine-scale currents, (1–100 km, days–months), are actively involved in the transport and transformation of biogeochemical tracers in the ocean. However, their overall impact on large-scale biogeochemical cycling on the timescale of years remains poorly understood due to the multiscale nature of the problem. Here, we summarize these impacts and critically review current estimates. We examine how eddy fluxes and upscale connections enter into the large-scale balance of biogeochemical tracers. We show that the overall contribution of eddy fluxes to primary production and carbon export may not be as large as it is for oxygen ventilation. We highlight the importance of fine scales to low-frequency natural variability through upscale connections and show that they may also buffer the negative effects of climate change on the functioning of biogeochemical cycles. Significant interdisciplinary efforts are needed to properly account for the cross-scale effects of fine scales on biogeochemical cycles in climate projections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-020723-020531
2024-01-17
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/16/1/annurev-marine-020723-020531.html?itemId=/content/journals/10.1146/annurev-marine-020723-020531&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathey R, Gnanadesikan A, Pradal MA, Sundermeyer MA 2022. Isopycnal mixing. Ocean Mixing: Drivers, Mechanisms and Impacts M Meredith, AN Garabato 21547. Amsterdam: Elsevier
    [Google Scholar]
  2. Bahl A, Gnanadesikan A, Pradal MAS. 2019. Variations in ocean deoxygenation across Earth system models: isolating the role of parameterized lateral mixing. Glob. Biogeochem. Cycles 33:70324
    [Google Scholar]
  3. Bahl A, Gnanadesikan A, Pradal MAS. 2020. Scaling global warming impacts on ocean ecosystems: lessons from a suite of Earth system models. Front. Mar. Sci. 7:698
    [Google Scholar]
  4. Balwada D, Smith KS, Abernathey R. 2018. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current. Geophys. Res. Lett. 45:9790802
    [Google Scholar]
  5. Balwada D, Xiao Q, Smith S, Abernathey R, Gray AR 2021. Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation. J. Phys. Oceanogr. 51:2883901
    [Google Scholar]
  6. Balwada D, Xie JH, Marino R, Feraco F. 2022. Direct observational evidence of an oceanic dual kinetic energy cascade and its seasonality. Sci. Adv. 8:eabq2566
    [Google Scholar]
  7. Beech N, Rackow T, Semmler T, Danilov S, Wang Q, Jung T 2022. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Change 12:91017
    [Google Scholar]
  8. Bolton T, Zanna L. 2019. Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 16:26524
    [Google Scholar]
  9. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:622545
    [Google Scholar]
  10. Bowie AR, van der Merwe P, Quéroué F, Trull T, Fourquez M et al. 2015. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2. Biogeosciences 12:442145
    [Google Scholar]
  11. Boyd PW, Claustre H, Lévy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:32735
    [Google Scholar]
  12. Brandt P, Bange HW, Banyte D, Dengler M, Didwischus SH et al. 2015. On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic. Biogeosciences 12:489512
    [Google Scholar]
  13. Brett GJ, Whitt DB, Long MC, Bryan FO, Feloy K, Richards KJ. 2023. Submesoscale effects on changes to export production under global warming. Glob. Biogeochem. Cycles 37:e2022GB007619
    [Google Scholar]
  14. Buongiorno Nardelli B, Mulet S, Iudicone D. 2018. Three-dimensional ageostrophic motion and water mass subduction in the Southern Ocean. J. Geophys. Res. Oceans 123:153362
    [Google Scholar]
  15. Busecke JJM, Abernathey RP. 2019. Ocean mesoscale mixing linked to climate variability. Sci. Adv. 5:eaav5014
    [Google Scholar]
  16. Busecke JJM, Resplandy L, Dunne JP. 2019. The equatorial undercurrent and the oxygen minimum zone in the Pacific. Geophys. Res. Lett. 46:671625
    [Google Scholar]
  17. Callies J, Ferrari R, Klymak JM, Gula J. 2015. Seasonality in submesoscale turbulence. Nat. Commun. 6:68629
    [Google Scholar]
  18. Capet X, Campos EJ, Paiva AM. 2008. Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett. 35:L15605
    [Google Scholar]
  19. Chang P, Zhang S, Danabasoglu G, Yeager SG, Fu H et al. 2020. An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst. 12:e2020MS002298
    [Google Scholar]
  20. Chassignet EP, Yeager SG, Fox-Kemper B, Bozec A, Castruccio F et al. 2020. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. 13:4595637
    [Google Scholar]
  21. Chelton DB, Schlax MG, Samelson RM. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91:167216
    [Google Scholar]
  22. Claustre H, Legendre L, Boyd P, Lévy M. 2021. The oceans' biological carbon pumps: framework for a research observational community approach. Front. Mar. Sci. 8:780052
    [Google Scholar]
  23. Comby C, Barrillon S, Fuda JL, Doglioli AM, Tzortzis R et al. 2022. Measuring vertical velocities with ADCPs in low-energy ocean. J. Atmos. Ocean. Technol. 39:166984
    [Google Scholar]
  24. Cordero Quiros N, Jacox MG, Buil MP, Bograd SJ. 2022. Future changes in eddy kinetic energy in the California Current System from dynamically downscaled climate projections. Geophys. Res. Lett. 49:e2022GL099042
    [Google Scholar]
  25. Couespel D, Lévy M, Bopp L. 2021. Oceanic primary production decline halved in eddy-resolving simulations of global warming. Biogeosciences 18:432149
    [Google Scholar]
  26. Cravatte S, Sérazin G, Penduff T, Menkes C. 2021. Imprint of chaotic ocean variability on transports in the southwestern Pacific at interannual timescales. Ocean Sci. 17:487507
    [Google Scholar]
  27. Cutolo E, Pascual A, Ruiz S, Johnston TMS, Freilich M et al. 2022. Diagnosing frontal dynamics from observations using a variational approach. J. Geophys. Res. Oceans 127:e2021JC018336
    [Google Scholar]
  28. Damien P, Bianchi D, McWilliams JC, Kessouri F, Deutsch C et al. 2023. Enhanced biogeochemical cycling along the U.S. West Coast shelf. Glob. Biogeochem. Cycles 37:e2022GB007572
    [Google Scholar]
  29. D'Asaro EA, Shcherbina AY, Klymak JM, Molemaker J, Novelli G et al. 2018. Ocean convergence and the dispersion of flotsam. PNAS 115:116267
    [Google Scholar]
  30. de Verneil A, Franks PJS, Ohman MD. 2019. Frontogenesis and the creation of fine-scale vertical phytoplankton structure. J. Geophys. Res. Oceans 124:150923
    [Google Scholar]
  31. d'Ovidio F. 2019. Frontiers in fine-scale in situ studies: opportunities during the SWOT fast sampling phase.. Front. Mar. Sci. 6:168
    [Google Scholar]
  32. d'Ovidio F, De Monte S, Alvain S, Dandonneau Y, Lévy M. 2010. Fluid dynamical niches of phytoplankton types. PNAS 107:1836670
    [Google Scholar]
  33. Erickson ZK, Thompson A. 2018. The seasonality of physically-driven export at submesoscales in the northeast Atlantic Ocean. Glob. Biogeochem. Cycles 32:114462
    [Google Scholar]
  34. Estapa ML, Siegel DA, Buesseler KO Stanley RHR, Lomas MW, Nelson NB 2015. Decoupling of net community and export production on submesoscales in the Sargasso Sea. Glob. Biogeochem. Cycles 29:126682
    [Google Scholar]
  35. Fennel K, Mattern JP, Doney SC, Bopp L, Moore AM et al. 2022. Ocean biogeochemical modelling. Nat. Rev. Methods Primers 2:76
    [Google Scholar]
  36. Feucher C, Portela E, Kolodziejczyk N, Thierry V. 2022. Subpolar gyre decadal variability explains the recent oxygenation in the Irminger Sea. Commun. Earth Environ. 3:279
    [Google Scholar]
  37. Fox-Kemper B, Adcroft A, Böning CW, Chassignet EP, Curchitser E et al. 2019. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6:65
    [Google Scholar]
  38. Freilich MA, Flierl G, Mahadevan A. 2022. Diversity of growth rates maximizes phytoplankton productivity in an eddying ocean. Geophys. Res. Lett. 49:e2021GL096180
    [Google Scholar]
  39. Freilich MA, Mahadevan A. 2019. Decomposition of vertical velocity for nutrient transport in the upper ocean. J. Phys. Oceanogr. 49:156175
    [Google Scholar]
  40. Frezat H, Le Sommer J, Fablet R, Balarac G, Lguenset R 2022. A posteriori learning for quasi-geostrophic turbulence parametrization. J. Adv. Model. Earth Syst. 14:e2022MS003124
    [Google Scholar]
  41. Garcia-Jove M, Mourre B, Zarokanellos N, Lermusiaux PFJ, Rudnick DL, Tintoré J. 2022. Frontal dynamics in the Alboran Sea: 2. Processes for vertical velocities development. J. Geophys. Res. Oceans 127:e2021JC017428
    [Google Scholar]
  42. Gehlen M, Berthet S, Séférian R, Ethé C, Penduff T. 2020. Quantification of chaotic intrinsic variability of sea-air CO2 fluxes at interannual timescales. Geophys. Res. Lett. 47:e2020GL088304
    [Google Scholar]
  43. Gent PR, McWilliams JC. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:15055
    [Google Scholar]
  44. Glover DM, Doney SC, Oestreich WK, Tullo AW. 2018. Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua global ocean color data. J. Geophys. Res. Oceans 123:2239
    [Google Scholar]
  45. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4:78792
    [Google Scholar]
  46. Gula J, Taylor J, Shcherbina A, Mahadevan A 2022. Submesoscale processes and mixing. Ocean Mixing: Drivers, Mechanisms and Impacts M Meredith, AN Garabato 181207. Amsterdam: Elsevier
    [Google Scholar]
  47. Guo M, Chai F. 2019. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres. J. Geophys. Res. Oceans 14:1321726
    [Google Scholar]
  48. Guo M, Xiu P, Xing X. 2022. Oceanic fronts structure phytoplankton distributions in the central South Indian Ocean. J. Geophys. Res. Oceans 127:e2021JC017594
    [Google Scholar]
  49. Haarsma RJ, Roberts MJ, Vidale PL, Senior CA, Bellucci A et al. 2016. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9:4185208
    [Google Scholar]
  50. Haëck C, Lévy M, Mangolte I, Bopp L. 2023. Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region. EGUsphere 2022-1489 https://doi.org/10.5194/egusphere-2022-1489
    [Google Scholar]
  51. Harrison CS, Long MC, Lovenduski NS, Moore JK. 2018. Mesoscale effects on carbon export: a global perspective. Glob. Biogeochem. Cycles 32:680703
    [Google Scholar]
  52. Hauschildt J, Thomsen S, Echevin V, Oschlies A, José YS et al. 2021. The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts. Biogeosciences 18:360529
    [Google Scholar]
  53. Henson SA, Laufkötter C, Leung S, Giering SLC, Palevsky HI, Cavan EL. 2022. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15:24854
    [Google Scholar]
  54. Hewitt H, Fox-Kemper B, Pearson B, Roberts M, Klocke D. 2022. The small scales of the ocean may hold the key to surprises. Nat. Clim. Change 12:49699
    [Google Scholar]
  55. Ito T, Takano Y, Deutsch C, Long MC. 2022. Sensitivity of global ocean deoxygenation to vertical and isopycnal mixing in an ocean biogeochemistry model. Glob. Biogeochem. Cycles 36:e2021GB007151
    [Google Scholar]
  56. Jönsson BF, Salisbury JE, Atwood EC, Sathyendranath S, Mahadevan A. 2023. Dominant timescales of variability in global satellite chlorophyll and SST revealed with a MOving Standard deviation Saturation (MOSS) approach. Remote Sens. Environ. 286:113404
    [Google Scholar]
  57. Jönsson BF, Salisbury JE, Mahadevan A. 2011. Large variability in continental shelf production of phytoplankton carbon revealed by satellite. Biogeosciences 8:121323
    [Google Scholar]
  58. Jüling A, von der Heydt A, Dijkstra HA. 2021. Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model. Ocean Sci. 17:125171
    [Google Scholar]
  59. Kahru M, Jacox MG, Ohman MD. 2018. CCE1: decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014–2016 northeast Pacific warm anomalies. Deep-Sea Res. I 140:413
    [Google Scholar]
  60. Karleskind P, Lévy M, Memery L. 2011. Modifications of mode water properties by sub-mesoscales in a bio-physical model of the Northeast Atlantic. Ocean Model. 39:4760
    [Google Scholar]
  61. Keerthi MG, Prend CJ, Aumont O, Lévy M. 2022. Annual variations in phytoplankton biomass driven by small-scale physical processes. Nat. Geosci. 15:102733
    [Google Scholar]
  62. Kessouri F, Bianchi D, Renault L, McWilliams JC, Frenzel H, Deutsch CA 2020. Submesoscale currents modulate the seasonal cycle of nutrients and productivity in the California Current System. Glob. Biogeochem. Cycles 34:e2020GB006578
    [Google Scholar]
  63. Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1:35175
    [Google Scholar]
  64. Kwiatkowski L, Torres O, Bopp L, Aumont O, Chamberlain M et al. 2020. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17:343970
    [Google Scholar]
  65. Lachkar Z, Smith S, Lévy M, Pauluis O. 2016. Eddies reduce denitrification and compress habitats in the Arabian Sea. Geophys. Res. Lett. 43:914856
    [Google Scholar]
  66. Landschützer P, Gruber N, Bakker DCE. 2016. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30:1396417
    [Google Scholar]
  67. Lehahn Y, d'Ovidio F, Koren I. 2017a. A satellite-based Lagrangian view on phytoplankton dynamics. Annu. Rev. Mar. Sci. 10:99119
    [Google Scholar]
  68. Lehahn Y, d'Ovidio F, Lévy M, Heifetz E. 2007. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J. Geophys. Res. Oceans 112:C08005
    [Google Scholar]
  69. Lehahn Y, Koren I, Sharoni S, d'Ovidio F, Vardi A, Boss E. 2017b. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters. Nat. Commun. 8:14868
    [Google Scholar]
  70. Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P. 2012a. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39:L14602
    [Google Scholar]
  71. Lévy M, Franks PJS, Smith KS. 2018. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9:15716
    [Google Scholar]
  72. Lévy M, Iovino D, Resplandy L, Klein P, Madec G et al. 2012b. Large-scale impacts of submesoscale dynamics on phytoplankton: local and remote effects. Ocean Model. 43–44:7793
    [Google Scholar]
  73. Lévy M, Klein P, Treguier A. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59:53565
    [Google Scholar]
  74. Lévy M, Martin AP. 2013. The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Glob. Biogeochem. Cycles 27:113950
    [Google Scholar]
  75. Lévy M, Resplandy L, Klein P, Capet X, Iovino D, Ethé C. 2012c. Grid degradation of submesoscale resolving ocean models: benefits for offline passive tracer transport. Ocean Model. 48:19
    [Google Scholar]
  76. Lévy M, Resplandy L, Lengaigne M. 2014. Oceanic mesoscale turbulence drives large biogeochemical interannual variability at middle and high latitudes. Geophys. Res. Lett. 41:246774
    [Google Scholar]
  77. Lévy M, Resplandy L, Palter JB, Couespel D, Lachkar Z 2022. The crucial contribution of mixing to present and future ocean oxygen distribution. Ocean Mixing: Drivers, Mechanisms and Impacts M Meredith, AN Garabato 32944. Amsterdam: Elsevier
    [Google Scholar]
  78. Li J, Roughan M, Kerry C. 2022. Drivers of ocean warming in the western boundary currents of the Southern Hemisphere. Nat. Clim. Change 12:9019
    [Google Scholar]
  79. Liao F, Liang X, Li Y, Spall M. 2022. Hidden upwelling systems associated with major western boundary currents. J. Geophys. Res. Oceans 127:e2021JC017649
    [Google Scholar]
  80. Liao F, Resplandy L, Junjie L, Bowman KW. 2020. Amplification of the ocean carbon sink during El Niños: role of poleward Ekman transport and influence on atmospheric CO2. Glob. Biogeochem. Cycles 34:e2020GB006574
    [Google Scholar]
  81. Lim HG, Dunne JP, Stock CA, Kwon M. 2022. Attribution and predictability of climate-driven variability in global ocean color. J. Geophys. Res. Oceans 127:e2022JC019121
    [Google Scholar]
  82. Little HJ, Vichi M, Thomalla SJ, Swart S. 2018. Spatial and temporal scales of chlorophyll variability using high-resolution glider data. J. Mar. Syst. 187:112
    [Google Scholar]
  83. Liu X, Levine NM. 2016. Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 43:165159
    [Google Scholar]
  84. Llort J, Langlais C, Matear R, Moreau S, Lenton A, Strutton PG. 2018. Evaluating Southern Ocean carbon eddy-pump from Biogeochemical Argo floats. J. Geophys. Res. Oceans 123:97184
    [Google Scholar]
  85. Löptien U, Dietze H. 2019. Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing. Biogeosciences 16:186581
    [Google Scholar]
  86. Lovenduski NS, Gruber N. 2005. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32:L11603
    [Google Scholar]
  87. Ma X, Chen G, Li Y, Zeng L. 2022. Interannual variability of sea surface chlorophyll a in the southern tropical Indian Ocean: local versus remote forcing. Deep-Sea Res. I 190:103914
    [Google Scholar]
  88. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:16184
    [Google Scholar]
  89. Mahadevan A, D'Asaro E, Lee C, Perry MJ 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:5458
    [Google Scholar]
  90. Mahadevan A, Pascual A, Rudnick DL, Ruiz S, Tintoré J, D'Asaro E. 2020. Coherent pathways for vertical transport from the surface ocean to interior. Bull. Am. Meteorol. Soc. 101:E19962004
    [Google Scholar]
  91. Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 14:24156
    [Google Scholar]
  92. Mak J, Maddison JR, Marshall DP, Munday DR. 2018. Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr. 48:236382
    [Google Scholar]
  93. Mangolte I, Lévy M, Dutkiewicz S, Clayton S, Jahn O. 2022. Plankton community response to fronts: winners and losers. J. Plankton Res. 44:24158
    [Google Scholar]
  94. Mangolte I, Lévy M, Haëck C, Ohman MD. 2023. Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts.. EGUsphere 2023-471. https://doi.org/10.5194/egusphere-2023-471
  95. Marrec P, Grégori G, Doglioli AM, Dugenne M, Della Penna A et al. 2018. Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea. Biogeosciences 15:1579606
    [Google Scholar]
  96. Martin AP, Lévy M, van Gennip S, Pardo S, Srokosz M et al. 2015. An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions. Glob. Biogeochem. Cycles 29:142138
    [Google Scholar]
  97. Martinez E, Raitsos DE, Antoine D. 2016. Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years. Glob. Change Biol. 22:60412
    [Google Scholar]
  98. Martínez-Moreno J, Hogg AM, England MH. 2022. Climatology, seasonality, and trends of spatially coherent ocean eddies. J. Geophys. Res. Oceans 127:e2021JC017453
    [Google Scholar]
  99. Matear RJ, Chamberlain MA, Sun C, Feng M. 2013. Climate change projection of the Tasman Sea from an eddy-resolving ocean model. J. Geophys. Res. Oceans 118:296176
    [Google Scholar]
  100. Mayersohn B, Lévy M, Mangolte I, Smith KS. 2022. Emergence of broadband variability in a marine plankton model under external forcing. J. Geophys. Res. 127:e2022JG007011
    [Google Scholar]
  101. McGillicuddy DJ Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8:12559
    [Google Scholar]
  102. McGillicuddy DJ Jr. 2019. Estimating particle export flux from satellite observations: challenges associated with spatial and temporal decoupling of production and export. J. Mar. Res. 12:24758
    [Google Scholar]
  103. McGillicuddy DJ Jr., Robinson AR, Siegel DA, Jannasch HW, Johnson R et al. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:26366
    [Google Scholar]
  104. McWilliams JC. 2016. Submesoscale currents in the ocean. Proc. R. Soc. A 472:20160117
    [Google Scholar]
  105. McWilliams JC. 2019. A survey of submesoscale currents. Geosci. Lett. 6:3
    [Google Scholar]
  106. Naveira Garabato AC, Yu X, Callies J, Barkan R, Polzin KL et al. 2022. Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean's upper layers. J. Phys. Oceanogr. 52:7597
    [Google Scholar]
  107. Nicholson SA, Whitt DB, Fer I, Plessis MD, Lebéhot AD et al. 2022. Storms drive outgassing of CO2 in the subpolar Southern Ocean. Nat. Commun. 13:158
    [Google Scholar]
  108. Oliver E, O'Kane TJ, Holbrook NJ. 2015. Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans 120:715065
    [Google Scholar]
  109. Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:22225
    [Google Scholar]
  110. Oschlies A. 2002. Can eddies make ocean deserts bloom. Glob. Biogeochem. Cycles 16:1106
    [Google Scholar]
  111. Penduff T, Juza M, Barnier B, Zika J, Dewar WK et al. 2011. Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Clim. 24:565270
    [Google Scholar]
  112. Penduff T, Serazin G, Leroux S, Close S. 2018. Chaotic variability of ocean heat content: climate-relevant features and observational implications. Oceanography 31:26371
    [Google Scholar]
  113. Pietri A, Capet X, d'Ovidio F, Lévy M, Le Sommer J et al. 2021. Skills and limitations of the adiabatic omega equation: How effective is it to retrieve oceanic vertical circulation at meso and submesoscale?. J. Phys. Oceanogr. 51:93154
    [Google Scholar]
  114. Poupon M, Resplandy L, Lévy M, Bopp L. 2022. Pacific decadal oscillation influences tropical oxygen minimum zone extent and obscures anthropogenic changes.. ESS Open Archive 10512869.1. https://doi.org/10.1002/essoar.10512869.1
  115. Prend CJ, Flierl GR, Smith KM, Kaminski AK. 2021. Parameterizing eddy transport of biogeochemical tracers.. Geophys. Res. Lett. 48:e2021GL094405
    [Google Scholar]
  116. Prend CJ, Keerthi MG, Lévy M, Aumont O, Gille ST, Talley LD. 2022. Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity. Glob. Biogeochem. Cycles 36:e2022GB007329
    [Google Scholar]
  117. Racault MF, Sathyendranath S, Brewin RJW, Raitsos DE, Jackson T, Platt T. 2017. Impact of El Niño variability on oceanic phytoplankton. Front. Mar. Sci. 4:133
    [Google Scholar]
  118. Ramachandran S, Tandon A, Mahadevan A. 2014. Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans 119:8495511
    [Google Scholar]
  119. Resplandy L, Lévy M, Bopp L, Echevin V, Pous S et al. 2012. Controlling factors of the oxygen balance in the Arabian Sea's OMZ.. Biogeosciences 9:5095109
    [Google Scholar]
  120. Resplandy L, Lévy M, McGillicuddy DJ Jr. 2019. Effects of eddy-driven subduction on ocean biological carbon pump. Glob. Biogeochem. Cycles 33:107184
    [Google Scholar]
  121. Resplandy L, Vialard J, Lévy M, Aumont O, Dandonneau Y. 2009. Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. J. Geophys. Res. Oceans 114:C07024
    [Google Scholar]
  122. Richards KJ, Whitt DB, Brett G, Bryan FO, Feloy K, Long MC. 2021. The impact of climate change on ocean submesoscale activity. J. Geophys. Res. Oceans 126:e2020JC016750
    [Google Scholar]
  123. Rodenbeck C, Bakker DCE, Gruber N, Iida Y, Jacobson AR et al. 2015. Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean ρCO2 Mapping intercomparison (SOCOM). Biogeosciences 12:725178
    [Google Scholar]
  124. Rosso I, Hogg AM, Matear R, Strutton PG. 2016. Quantifying the influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean phytoplankton blooms. Deep-Sea Res. I 115:199209
    [Google Scholar]
  125. Rosso I, Hogg AM, Strutton PG, Kiss AE, Matear R et al. 2014. Vertical transport in the ocean due to sub-mesoscale structures: impacts in the Kerguelen region. Ocean Model. 80:1023
    [Google Scholar]
  126. Ruiz S, Claret M, Pascual A, Olita A, Troupin C et al. 2019. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton. J. Geophys. Res. Oceans 124:59996014
    [Google Scholar]
  127. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  128. Sasaki H, Qiu B, Klein P, Nonaka M, Sasai Y. 2022. Interannual variations of submesoscale circulations in the subtropical northeastern Pacific. Geophys. Res. Lett. 49:e2021GL097664
    [Google Scholar]
  129. Sasaki H, Qiu B, Klein P, Sasai Y, Nonaka M. 2020. Interannual to decadal variations of submesoscale motions around the North Pacific subtropical countercurrent. Fluids 5:116
    [Google Scholar]
  130. Sérazin G, Jaymond A, Leroux S, Penduff T, Bessières L et al. 2017. A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos. Geophys. Res. Lett. 44:558089
    [Google Scholar]
  131. Sergi S, Baudena A, Cotte C, Ardyna M, Blain S, d'Ovidio F. 2020. Interaction of the Antarctic Circumpolar Current with seamounts fuels moderate blooms but vast foraging grounds for multiple marine predators. Front. Mar. Sci. 7:416
    [Google Scholar]
  132. Serra-Pompei C, Ward BA, Pinti J, Visser AW, Kiørboe T, Anderson KH. 2022. Linking plankton size spectra and community composition to carbon export and its efficiency. Glob. Biogeochem. Cycles 36:e2021GB007275
    [Google Scholar]
  133. Siegelman L, Klein P, Rivière P, Thompson AF, Torres HS et al. 2020. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13:5055
    [Google Scholar]
  134. Spingys CP, Williams RG, Tuerena RE, Garabato AN, Vic C et al. 2021. Observations of nutrient supply by mesoscale eddy stirring and small-scale turbulence in the oligotrophic North Atlantic. Glob. Biogeochem. Cycles 35:e2021GB007200
    [Google Scholar]
  135. Tarry DR, Essink S, Pascual A, Ruiz S, Poulain PM et al. 2021. Frontal convergence and vertical velocity measured by drifters in the Alboran Sea. J. Geophys. Res. Oceans 126:e2020JC016614
    [Google Scholar]
  136. Tarry DR, Ruiz S, Johnston TMS, Poulain PM, Özgökmen T et al. 2022. Drifter observations reveal intense vertical velocity in a surface ocean front. Geophys. Res. Lett. 49:e2022GL098969
    [Google Scholar]
  137. Taylor JR, Smith KM, Vreugdenhil CA. 2020. The influence of submesoscales and vertical mixing on the export of sinking tracers in large-eddy simulations. J. Phys. Oceanogr. 50:131939
    [Google Scholar]
  138. Taylor JR, Thompson AF. 2023. Submesoscale dynamics in the upper ocean. Annu. Rev. Fluid Mech. 55:10327
    [Google Scholar]
  139. Treguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11:2737
    [Google Scholar]
  140. Tzortzis R, Doglioli AM, Barrillon S, Petrenko AA, d'Ovidio F et al. 2021. Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea. Biogeosciences 18:645577
    [Google Scholar]
  141. Uchida T, Balwada D, Abernathey R, McKinley G, Smith S, Lévy M. 2019. The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst. 11:393458
    [Google Scholar]
  142. Wang S, Jing Z, Wu L, Cai W, Chang P et al. 2022. El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nat. Geosci. 15:11217
    [Google Scholar]
  143. Whitt DB 2019. On the role of the Gulf Stream in the changing Atlantic nutrient circulation during the 21st century. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics T Nagai, H Saito, K Suzuki, M Takahashi 5182. Hoboken, NJ: Wiley
    [Google Scholar]
  144. Whitt DB, Lévy M, Taylor JR. 2019. Submesoscales enhance storm-driven vertical mixing of nutrients: insights from a biogeochemical large eddy simulation. J. Geophys. Res. Oceans 124:814065
    [Google Scholar]
  145. Whitt DB, Taylor JR. 2017. Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Oceanogr. 47:241927
    [Google Scholar]
  146. Williams RG, Follows MJ. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms Cambridge, UK: Cambridge Univ. Press
  147. Wilson C. 2021. Evidence of episodic nitrate injections in the oligotrophic North Pacific associated with surface chlorophyll blooms. J. Geophys. Res. Oceans 126:e2021JC017169
    [Google Scholar]
  148. Yamamoto A, Palter JB, Dufour CO, Griffies SM, Bianchi D et al. 2018. Roles of the ocean mesoscale in the horizontal supply of mass, heat, carbon, and nutrients to the Northern Hemisphere subtropical gyres. J. Geophys. Res. Oceans 123:701636
    [Google Scholar]
  149. Zanna L, Brankart JM, Huber M, Leroux S, Penduff T, Williams PD. 2018. Uncertainty and scale interactions in ocean ensembles: from seasonal forecasts to multidecadal climate predictions. Q. J. R. Meteorol. Soc. 145:16075
    [Google Scholar]
  150. Zhang Z, Qiu B, Klein P, Travis S. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat. Commun. 10:2838
    [Google Scholar]
/content/journals/10.1146/annurev-marine-020723-020531
Loading
/content/journals/10.1146/annurev-marine-020723-020531
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error