Skip to main content
Log in

A New Way to Construct the Riemann Curvature Tensor Using Geometric Algebra and Division Algebraic Structure

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The Riemann curvature tensor is constructed using the Clifford-Dirac geometric algebra and division-algebraic operator structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See, e.g., Ref. [16], p. 2; Ref. [1], p. 9.; Ref. [8], Eq. (3); Ref. [12], Eq. (5).

  2. Ref. [28], p. 89.

  3. Ref. [1], Ch. 3 & Sec. 3.3.

  4. Ref. [17], Secs. 11.5 & 24.6.

  5. See Ref. [23], Sec. III, for the step-by-step derivation, which results in Eq. (8) herein.

  6. See, e.g., Ref. [3], Eqs. (9.29)–(9.30).

  7. Ref. [2], p. 246.

  8. See, e.g., Ref. [7], p. 404.

  9. Ref. [13], p. 224.

  10. Ref. [2], pp. 403–405.

  11. Ref. [20], Sec. 6.2, p. 155: Any symmetric matrix can be transformed into a diagonal matrix with main diagonal \(\pm 1\) entries.

  12. In like manner the 8-component strong interaction gauge field: \(G_{\mu }^{a}\mid a:1\rightarrow 8\), requires an analogous 8-component operator, which has been constructed (Ref. [26], Sec. 3.3).

  13. See, e.g., Ref. [7], p. 404, for the component expression of \(\textbf{R}\) in the \(\{\partial _{\mu }\}\) basis.

References

  1. Ablamowicz, R., Sobczyk, G.: Lectures on Clifford, Geometric Algebras and Applications. Birkhauser, New York (2004)

    Book  MATH  Google Scholar 

  2. Baez, J., Muniain, J.P.: Gauge Fields. Knots and Gravity. World Scientific Publishing, Hackensack (2013)

    MATH  Google Scholar 

  3. Bailin, D., Love, A.: Introduction to Gauge Field Theory, rev Taylor & Francis Group, Philadelphia (1993)

    MATH  Google Scholar 

  4. Belishev, M.I., Vakulenko, A.F.: On algebras of harmonic quaternion fields in \({\mathbb{R}}^{3}\). arXiv:1710.00577v3 [math.FA] (2007)

  5. Conway, J.H., Smith, D.A.: On Quaternions and Octonions. CRC Press, Boca Raton (2003)

    Book  MATH  Google Scholar 

  6. Dixon, G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer Academic Publishers, Norwell (1994)

    Book  MATH  Google Scholar 

  7. Fecko, M.: Differential Geometry and Lie groups for Physicists. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  8. Graff, B.: Quaternions and dynamics. arXiv:0811.2889v1 [math.DS] (2008)

  9. Griffiths, D.: Introduction to Elementary Particles, 2nd rev Wiley-VCH, Weinheim (2008)

    MATH  Google Scholar 

  10. Hasiewicz, Z., Kwaśniewski, A.K., Morawiec, P.: On parallelizable spheres, division algebras and Clifford algebras. Rep. Math. Phys. 23, 2 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen, 309–316 (1898)

  12. Krishnaswami, G.S., Sonakshi, S.: Algebra and geometry of Hamilton’s quaternions. Resonance 21, 529–544 (2016)

    Article  Google Scholar 

  13. Maia, M.D.: Geometry of the Fundamental Interactions. Springer, New York (2011)

    Book  MATH  Google Scholar 

  14. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press, Princeton, New Jersey (2017)

    MATH  Google Scholar 

  15. Nakahara, M.: Geometry, Topology and Physics, 2nd edn. IOP Publishing Ltd. (2003)

  16. Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  17. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage Books, New York (2004)

    MATH  Google Scholar 

  18. Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, 2nd edn. Princeton University Press, Princeton (2013)

    MATH  Google Scholar 

  19. Ramond, P.: Group Theory: A Physicist’s Survey. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  20. Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  21. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  22. Woit, P.: Quantum Theory. Groups and Representations. Springer, Switzerland (2017)

    Book  MATH  Google Scholar 

  23. Wolk, B.: An alternative derivation of the Dirac operator generating intrinsic Lagrangian local gauge invariance. Pap. Phys. 9, 090002 (2017)

    Article  Google Scholar 

  24. Wolk, B.: An alternative formalism for generating pre-Higgs \(SU(2)_{L}\otimes U(1)_{_{Y}}\) electroweak unification that intrinsically accommodates \(SU(2)\) left-chiral asymmetry. Phys. Scr. 94, 025301 (2019)

    Article  ADS  Google Scholar 

  25. Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(2)\otimes U(1)\). Int. J. Mod. Phys. A 35, 2050037 (2020)

    Article  ADS  Google Scholar 

  26. Wolk, B.: The underlying geometry of the Standard Model of particle physics: \(SU(3)\). Adv. Appl. Clifford Algebra 31, 26 (2021)

    Article  MATH  Google Scholar 

  27. Wolk, B.: Building the Standard Model particles and fields within a sphere fiber bundle framework. Phys. Open 15, 100153 (2023)

    Article  Google Scholar 

  28. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author did not receive support from any organization for the submitted work.

Corresponding author

Correspondence to Brian Jonathan Wolk.

Ethics declarations

Conflict of interest

The author has no competing or conflicting interests to declare that are relevant to the content of this article.

Funding

The author has no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolk, B.J. A New Way to Construct the Riemann Curvature Tensor Using Geometric Algebra and Division Algebraic Structure. Adv. Appl. Clifford Algebras 33, 42 (2023). https://doi.org/10.1007/s00006-023-01286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01286-8

Keywords

Mathematics Subject Classification

Navigation