Skip to main content
Log in

Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

No data is used to support this article.

Notes

  1. If a operator A is Hermitian, then \(\exp (iA)\) is unitary.

References

  1. Altaisky, M.V.: Quantum neural network, Technical Report, Joint Institute for Nuclear Research, Russia (2001). arXiv: quant-ph/0107012v2

  2. Alves, R., Lavor, C.: Clifford Algebra applied to Grover’s Algorithm. Adv. Appl. Clifford Alg. 20, 477–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayro-Corrochano, E.: Applications of Geometric Algebra Vol. I. Computer Vision, Graphics and Neurocomputing, Chap 13, pp. 471–478. Springer, Berlin (2019)

  4. Bayro-Corrochano, E., Gamboa-Soliz, S., Altamirano-Escobedo, G., Lechuga-Gutierres, L., Lisarraga-Rodriguez, J.: Quaternionic spiking and quaternionic quantum neural networks: theory and applications. Int. J. Neural Syst. 31, 2 (2021)

    Article  Google Scholar 

  5. Beer, K., Bondarenko, D., Farrelly, T., Osborne, J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)

    Article  ADS  Google Scholar 

  6. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parametrized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  7. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  8. Bottaci, L.: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350(9076), 469–72 (1997)

    Article  Google Scholar 

  9. Buchholz, S.: A Theory of Neural Computation with Clifford Algebras. PhD Thesis, Kiel (2005)

  10. Buchholz, S., Sommer, G.: On Clifford neurons and multi-layer perceptrons. Neural Netws. 21, 925–935 (2008)

    Article  MATH  Google Scholar 

  11. Cai, X.-D., et al.: Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 1144, 110504 (2015)

    Article  Google Scholar 

  12. Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. 115(38), 9456–9461 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: IEEE Conference on Computer vision and Pattern Recognition, pp. 3642–3649 (2012)

  14. da Silva, A.J., Ludermir, T.B., Oliveira, W.R.: Quantum perceptron over a field and neural network architecture in quantum computer. Neural Netw. 76, 55–64 (2016)

    Article  MATH  Google Scholar 

  15. De Bie, H.: Clifford algebras, Fourier transforms, and quantum mechanics. Math. Methods Appl. Sci. 35(18), 2198–2228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganesan, N.: Application of neural networks in diagnosing cancer disease using demographic data. Int. Comput. Appl. 1(26), 81–97 (2010)

    Google Scholar 

  17. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  20. Jozsa, R., Miyake, A.: Matchgates and classical simulation of quantum circuits. Proc. R. Soc. A 464, 3089–3106 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kak, S.C.: Quantum neural computing. Adv. Imaging Electron Phys. 94, 259–313 (1995)

    Article  Google Scholar 

  22. Kerenidis, I., Landman, J., Mathur, N.: Classical and Quantum Algorithms for orthogonal neural networks (2021). arXiv:2106.07198v1 [quant-ph]

  23. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Article  Google Scholar 

  24. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  25. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Rosenblatt, F.: The Perceptron-a perceiving and recognizing automaton, Report 85-460-1. Cornell Aeronautical Laboratory (1957)

  27. Schuld, M.: Petruccione. Machine Learning with Quantum Computers. Springer, Switzerland (2021)

    Book  MATH  Google Scholar 

  28. Shao, Chapeng: A quantum model of feed-forward neural networks with unitary learning algorithms. Quant. Inf. Process. 19, 102 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Song, Hai-Jing., Zhou, D.L.: Group theory on quantum Boltzmann machine. Phys. Lett. A 399, 127298 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Teguri, T., Isokawa, T., Matsui, N., Nishimura H., Kamiura, N.: Time series prediction by quaternionic qubit neural network. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2020)

  31. Trindade, M.A.S., Pinto, E., Vianna, J.D.M.: Adv. Appl. Clifford Alg. 26, 771–792 (2016)

  32. Vaz, J., Jr., Rocha, R., Jr.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, New York (2016)

    Book  MATH  Google Scholar 

  33. Vlasov, A.Y.: Clifford algebras and universal quantum gates. Phys. Rev. A 63, 054302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. Walter, M.: Symmetry and Quantum Information. Lecture Notes, Spring (2018)

  35. Wehner, S., Winter, A.: Higher entropic uncertainty relations for anti-commuting observables. J. Math. Phys. 49, 062105 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, G., Rong, H., Neri, F., Prez-Jimnez, M.J.: An optimization spiking neural system for approximately solving combinatorial optimizations problems. Int. J. Neural Syst. 24(05), 1440006 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. S. Trindade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Basic Elements of Clifford Algebras

In this appendix, we review some basic concepts about Clifford algebras [24, 32].

Given a vector space V, the Clifford algebra can be defined as quotient \(Cl(V,Q)=\frac{T(V)}{I}\), where \(I_{Q}\) is a two sided ideal generated by elements

$$\begin{aligned} v \otimes v - Q(v)1, \end{aligned}$$
(60)

for all \(v \in V\); Q is the quadratic form and T(V) is the tensor algebra. Alternatively, let V be a space vector over \(\mathbb {R}\) equipped with a symmetric bilinear form g, A an associative algebra with unit \(1_{A}\), and \(\gamma \) a linear application \(\gamma :V\rightarrow A\). The pair \((A, \gamma )\) is a Clifford algebra for the quadratic space (Vg) if A is generated as an algebra by \(\{\gamma (v); v \in V\}\), \(\{a 1_{A}; a \in \mathbb {R}\}\) and satisfies

$$\begin{aligned} \gamma (v)\gamma (u)+\gamma (u)\gamma (v)=2g(v,u)1_{A}, \end{aligned}$$
(61)

for all \(v,u \in V\). Let V be a vector space \(\mathbb {R}^{n}\) and g a symmetric bilinear form in \(\mathbb {R}^{n}\) of signature (pq) with \(p+q=n\). We will denote by \(Cl(p,q) \equiv Cl_{p,q} \equiv Cl(\mathbb {R}^{p,q})\) the Clifford algebra associated with the quadratic space \(\mathbb {R}^{p,q}\). In addition, we denote \(Cl(2n,0)\equiv Cl(2n)\). The even subalgebra is defined by:

$$\begin{aligned} Cl^{+}_{p,q}=\{\Gamma \in Cl_{p,q} ; \Gamma = \widehat{\Gamma }\}, \end{aligned}$$
(62)

where \(\widehat{\ \cdot \ }\) denotes graded involution, which keeps the sign of the elements belonging to even subspaces. Note that the involution of a k-vector \(\Gamma _{[k]}\) is given by \(\widehat{\Gamma }_{[k]}=(-1)^{k}\Gamma _{[k]}\). The groups spin(pq) and \(spin_{+}(p,q)\) are given by:

$$\begin{aligned} spin(p,q)=\{a \in Cl_{p,q}^{+}; N(a)=\pm 1 \} \end{aligned}$$
(63)

and

$$\begin{aligned} spin_{+}(p,q)=\{a \in Cl_{p,q}^{+}; N(a)= 1 \}, \end{aligned}$$
(64)

respectively, where \(N(a)=\vert a \vert ^{2}=\langle \widetilde{a} a \rangle _{0}\) is related to the norm of elements of Clifford algebra, and \(\widetilde{\ \cdot \ }\) represents the reversion operator defined by \(\widetilde{\Gamma }_{[k]}=(-1)^{k(k-1)/2}\Gamma _{[k]};\) \(\langle \ \ \rangle _{k}:Cl_{p,q}\rightarrow \bigwedge _{k}(\mathbb {R}_{p,q})\), with \(\bigwedge _{k}(\mathbb {R}_{p,q})\) denoting the exterior algebra of vector space \(\mathbb {R}_{p,q}\).

The Lie Algebra of \(spin_{+}(p,q)\) is the space of bivectors \(\bigwedge ^{2} \mathbb {R}^{p,q}\). Let \(B_{1}\) and \(B_{2}\) be two bivectors. Then the commutator

$$\begin{aligned}{}[B_{1},B_{2}] \in {\bigwedge \nolimits ^{\!\!2}} \mathbb {R}^{p,q} \end{aligned}$$
(65)

is a bivector.

B Swap Test

The swap test consists of the decomposition [34]

$$\begin{aligned} (\mathbb {C}^{d})^{\otimes 2}=Sym^{2}(\mathbb {C}^{d})\oplus \Lambda ^{2} (\mathbb {C}^{d}), \end{aligned}$$
(66)

where \(Sym^{2}(\mathbb {C}^{d})\) and \(\Lambda ^{2} (\mathbb {C}^{d})\) are symmetric and antisymmetric spaces, respectively. Consider the system in the state \(\vert 0, \phi , \psi \rangle \). The Hadamard gate transforms this state in

$$\begin{aligned} \frac{1}{\sqrt{2}}(\vert 0, \phi , \psi \rangle + \vert 1, \phi , \psi \rangle ). \end{aligned}$$
(67)

Then, the controlled swap gate produces

$$\begin{aligned} \frac{1}{\sqrt{2}}(\vert 0, \psi , \phi \rangle + \vert 1, \phi , \psi \rangle ). \end{aligned}$$
(68)

After a second application of Hadamard gate, we obtain

$$\begin{aligned} \frac{1}{2} \vert 0 \rangle (\vert \psi , \phi \rangle + \vert \phi , \psi \rangle )+\frac{1}{2} \vert 1 \rangle (\vert \psi , \phi \rangle - \vert \phi , \psi \rangle ). \end{aligned}$$
(69)

If we perform a measurement on the first qubit, we would get

$$\begin{aligned} Pr(outcome =0)=\frac{1}{2}\left( 1+\vert \langle \psi \vert \phi \rangle \vert ^{2}\right) . \end{aligned}$$
(70)

By repeating N times this procedure, we obtain

$$\begin{aligned} \vert \langle \psi \vert \phi \rangle \vert =\left( 1-2 \frac{\#\{outcome=0\}}{N}\right) ^{1/2}. \end{aligned}$$
(71)

This equation allows the calculation of quantum fidelity in a quantum computer through measurements on the first qubit.

C A Simple Example of Decomposition of Quantum Gates

Unitary operators can be obtained through exponentials of anti-Hermitian operators. We will show how a simple circuit can be built from exponentials of elements of representations of Clifford algebras following the prescription obtained in the reference [25]. Thus we will build a circuit related to the unitary transformation

$$\begin{aligned} U(\theta _{1}, \theta _{2})= & {} \exp [i(\theta _{1}(\sigma _{x} \otimes \sigma _{y}) + \theta _{2} (\sigma _{y}\otimes \sigma _{x})] \\= & {} U( \theta _{1}) U( \theta _{2}), \end{aligned}$$

where

$$\begin{aligned} U(\theta _{1})= \left( \begin{array}{cccc} \cos (\theta _{1})&{} 0 &{} 0 &{} \sin (\theta _{1}) \\ 0 &{} \cos (\theta _{1}) &{} \sin (\theta _{1}) &{} 0 \\ 0 &{} -\sin (\theta _{1}) &{} \cos (\theta _{1}) &{} 0 \\ -\sin (\theta _{1}) &{} 0 &{} 0 &{} \cos (\theta _{1}) \\ \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} U(\theta _{2})= \left( \begin{array}{cccc} \cos (\theta _{2})&{} 0 &{} 0 &{} \sin (\theta _{2}) \\ 0 &{} \cos (\theta _{2}) &{} \sin (\theta _{2}) &{} 0 \\ 0 &{} -\sin (\theta _{2}) &{} \cos (\theta _{2}) &{} 0 \\ -\sin (\theta _{2}) &{} 0 &{} 0 &{} \cos (\theta _{2}) \\ \end{array} \right) . \end{aligned}$$

\(U(\theta _{1})\) can be expressed as a product of two-level unitary gates

$$\begin{aligned} U(\theta _{1})=U_{1}(\theta _{1})U_{2}(\theta _{1})U_{3}(\theta _{1}), \end{aligned}$$
(72)

where

$$\begin{aligned}{} & {} U_{1}(\theta _{1})= \left( \begin{array}{cccc} \cos (\theta _{1})&{} 0 &{} 0 &{} -\sin (\theta _{1}) \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ -\sin (\theta _{1}) &{} 0 &{} 0 &{} -\cos (\theta _{1}) \\ \end{array} \right) , \\{} & {} U_{2}(\theta _{2})= \left( \begin{array}{cccc} 1&{} 0 &{} 0 &{} 0 \\ 0 &{} \cos (\theta _{2}) &{} \sin (\theta _{2}) &{} 0 \\ 0 &{} \sin (\theta _{2}) &{} -\cos (\theta _{2}) &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} U_{3}(\theta _{2})= \left( \begin{array}{cccc} 1&{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 \\ \end{array} \right) . \end{aligned}$$

Analogously, \(U(\theta _{2})\) can be expressed as a product of two-level unitary gates

$$\begin{aligned} U(\theta _{2})=U_{1}(\theta _{2})U_{2}(\theta _{2})U_{3}(\theta _{2}), \end{aligned}$$
(73)

where

$$\begin{aligned}{} & {} U_{1}(\theta _{2})= \left( \begin{array}{cccc} \cos (\theta _{1})&{} 0 &{} 0 &{} -\sin (\theta _{1}) \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ -\sin (\theta _{1}) &{} 0 &{} 0 &{} -\cos (\theta _{1}) \\ \end{array} \right) , \\{} & {} U_{2}(\theta _{1})= \left( \begin{array}{cccc} 1&{} 0 &{} 0 &{} 0 \\ 0 &{} \cos (\theta _{1}) &{} -\sin (\theta _{1}) &{} 0 \\ 0 &{} -\sin (\theta _{1}) &{} -\cos (\theta ) &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} U_{3}(\theta _{1})= \left( \begin{array}{cccc} 1&{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1 \\ \end{array} \right) , \end{aligned}$$

so that

$$\begin{aligned} {U(\theta _{1},\theta _{2})}=U(\theta _{1})U(\theta _{2})=U_{1}(\theta _{1})U_{2}(\theta _{1})U_{3}(\theta _{1})U_{1}(\theta _{2})U_{2}(\theta _{2})U_{3}(\theta _{2}). \end{aligned}$$
(74)

The circuit is illustrated in the figure below.

figure a

where

$$\begin{aligned} \widetilde{U}_{1}(\theta _{1})= & {} \left( \begin{array}{cc} \cos (\theta _{1}) &{} -\sin (\theta _{1}) \\ -\sin (\theta _{1}) &{} -\cos (\theta _{1}) \\ \end{array} \right) , \widetilde{U}_{2}(\theta _{1})= \left( \begin{array}{cc} \cos (\theta _{1}) &{} \sin (\theta _{1}) \\ \sin (\theta _{1}) &{} -\cos (\theta _{1}) \\ \end{array} \right) ,\\ \widetilde{U}_{3}(\theta _{1})= & {} \left( \begin{array}{cc} -1 &{} 0 \\ 0 &{} -1 \\ \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} \widetilde{U}_{1}(\theta _{2})= & {} \left( \begin{array}{cc} \cos (\theta _{2}) &{} -\sin (\theta _{2}) \\ -\sin (\theta _{2} &{} -\cos (\theta _{2}) \\ \end{array} \right) , \widetilde{U}_{2}(\theta _{2})= \left( \begin{array}{cc} \cos (\theta _{2}) &{} -\sin (\theta _{2}) \\ -\sin (\theta _{2}) &{} -\cos (\theta _{2}) \\ \end{array} \right) ,\\ \widetilde{U}_{3}(\theta _{2})= & {} \left( \begin{array}{cc} -1 &{} 0 \\ 0 &{} -1 \\ \end{array} \right) . \end{aligned}$$

Notice that

$$\begin{aligned} U(\theta _{1})U(\theta _{2})\vert 00 \rangle= & {} [\cos (\theta _{1})\cos (\theta _{2})-\sin (\theta _{1})\sin (\theta _{2})] \vert 00 \rangle \nonumber \\{} & {} + [\sin (\theta _{1})\cos (\theta _{2})-\sin {\theta _{2}}\cos {\theta _{1}}] \vert 11 \rangle , \end{aligned}$$
(75)

which is generally an entangled state. We will build states with the following notation:

$$\begin{aligned} \vert x; \theta \rangle= & {} U(\theta )U(x)\vert 00 \rangle \\= & {} [\cos (\theta )\cos (x)-\sin (\theta )\sin (x)] \vert 00 \rangle + [\sin (\theta )\cos (x)-\sin (x)\cos (\theta )] \vert 11 \rangle , \end{aligned}$$

where \(\theta _{1}=\theta \) and \(\theta _{2}=x\) and

$$\begin{aligned} \vert y \rangle = U(y) \vert 00 \rangle = \cos (y) \vert 00 \rangle - \sin (y) \vert 11 \rangle . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, M.A.S., Lula-Rocha, V.N.A. & Floquet, S. Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform. Adv. Appl. Clifford Algebras 33, 38 (2023). https://doi.org/10.1007/s00006-023-01279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01279-7

Keywords

Navigation