Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-level system hyperpolarization using a quantum Szilard engine

Abstract

The innate complexity of solid-state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By implementing a quantum Szilard engine with an active feedback control loop, we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long intrinsic energy relaxation time exceeding 50 ms. The TLSs can be cooled down, resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative-temperature environment corresponding to a qubit population of ~80%. We show that the TLSs and qubit are the dominant loss mechanism for each other and that qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is, therefore, not only crucial to improve the qubit lifetimes but also to avoid non-Markovian qubit dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superconducting qubit, its environment and working principle of the Szilard engine.
Fig. 2: Szilard engine in action.
Fig. 3: Qubit evolution after running the Szilard engine.
Fig. 4: Measured population inversion and constant relaxation rate—signatures of the TLS environment.

Similar content being viewed by others

Data availability

Raw and processed data are publicly available via Zenodo at https://doi.org/10.5281/zenodo.7817552. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The analysis script used to generate the data in the figures is publicly available via Zenodo at https://doi.org/10.5281/zenodo.7817552.

References

  1. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  Google Scholar 

  2. Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344 (2019).

    Article  ADS  Google Scholar 

  3. Google Quantum AI. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

    Article  Google Scholar 

  4. Cai, W., Ma, Y., Wang, W., Zou, C.-L. & Sun, L. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res. 1, 50–67 (2021).

    Article  Google Scholar 

  5. Grabovskij, G. J., Peichl, T., Lisenfeld, J., Weiss, G. & Ustinov, A. V. Strain tuning of individual atomic tunneling systems detected by a superconducting qubit. Science 338, 232–234 (2012).

    Article  ADS  Google Scholar 

  6. Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article  ADS  Google Scholar 

  7. Risté, D. et al. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat. Commun. 4, 1913 (2013).

    Article  ADS  Google Scholar 

  8. Pop, I. M. et al. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature 508, 369–372 (2014).

    Article  ADS  Google Scholar 

  9. Gustavsson, S. et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science 354, 1573–1577 (2016).

    Article  ADS  Google Scholar 

  10. Grünhaupt, L. et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum. Phys. Rev. Lett. 121, 117001 (2018).

    Article  ADS  Google Scholar 

  11. Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    Article  ADS  Google Scholar 

  12. Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    Article  ADS  Google Scholar 

  13. De Graaf, S. E. et al. Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv. 6, eabc5055 (2020).

    Article  ADS  Google Scholar 

  14. Wilen, C. D. et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature 594, 369–373 (2021).

    Article  ADS  Google Scholar 

  15. Glazman, L. & Catelani, G. Bogoliubov quasiparticles in superconducting qubits. SciPost Phys. Lect. Notes 31 (2021).

  16. Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).

    Article  ADS  Google Scholar 

  17. Kirsh, N., Svetitsky, E., Burin, A. L., Schechter, M. & Katz, N. Revealing the nonlinear response of a tunneling two-level system ensemble using coupled modes. Phys. Rev. Mater. 1, 012601 (2017).

    Article  Google Scholar 

  18. Andersson, G. et al. Acoustic spectral hole-burning in a two-level system ensemble. npj Quantum Inf. 7, 15 (2021).

    Article  ADS  Google Scholar 

  19. Wang, Z. L. et al. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013).

    Article  ADS  Google Scholar 

  20. Lisenfeld, J. et al. Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf. 5, 105 (2019).

    Article  ADS  Google Scholar 

  21. Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840–856 (1929).

    Article  ADS  MATH  Google Scholar 

  22. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010).

    Article  Google Scholar 

  23. Koski, J. V., Maisi, V. F., Pekola, J. P. & Averin, D. V. Experimental realization of a Szilard engine with a single electron. Proc. Natl Acad. Sci. USA 111, 13786–13789 (2014).

    Article  ADS  Google Scholar 

  24. Peterson, J. P. S., Sarthour, R. S. & Laflamme, R. Implementation of a quantum engine fuelled by information. Preprint at https://arxiv.org/abs/2006.10136 (2020).

  25. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Article  ADS  Google Scholar 

  26. Broadway, D. A. et al. Quantum probe hyperpolarisation of molecular nuclear spins. Nat. Commun. 9, 1246 (2018).

    Article  ADS  Google Scholar 

  27. Córcoles, A. D. et al. Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Phys. Rev. Lett. 127, 100501 (2021).

    Article  ADS  Google Scholar 

  28. Gold, A. et al. Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quantum Inf. 7, 142 (2021).

    Article  ADS  Google Scholar 

  29. Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

    Article  ADS  Google Scholar 

  30. Grünhaupt, L. et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nat. Mater. 18, 816–819 (2019).

    Article  ADS  Google Scholar 

  31. Gusenkova, D. et al. Quantum nondemolition dispersive readout of a superconducting artificial atom using large photon numbers. Phys. Rev. Applied 15, 064030 (2021).

    Article  ADS  Google Scholar 

  32. Yang, A. et al. Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009).

    Article  ADS  Google Scholar 

  33. Wang, H.-J. et al. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nat. Commun. 4, 1940 (2013).

    Article  ADS  Google Scholar 

  34. Solomon, I. Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955).

    Article  ADS  Google Scholar 

  35. Vögeli, B. The nuclear Overhauser effect from a quantitative perspective. Prog. Nucl. Magn. Reson. Spectrosc. 78, 1–46 (2014).

    Article  Google Scholar 

  36. Klimov, P. V. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    Article  ADS  Google Scholar 

  37. Thorbeck, T., Eddins, A., Lauer, I., McClure, D. T. & Carroll, M. TLS dynamics in a superconducting qubit due to background ionizing radiation. Preprint at https://arxiv.org/abs/2210.04780 (2022).

  38. Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008).

    Article  Google Scholar 

  39. Lisenfeld, J. et al. Measuring the temperature dependence of individual two-level systems by direct coherent control. Phys. Rev. Lett. 105, 230504 (2010).

    Article  ADS  Google Scholar 

  40. Lisenfeld, J. et al. Decoherence spectroscopy with individual two-level tunneling defects. Sci. Rep. 6, 23786 (2016).

    Article  ADS  Google Scholar 

  41. Lee, K. H., Holmberg, G. E. & Crawford, J. H. Optical and ESR studies of hole centers in γ-irradiated Al2O3. Phys. Stat. Sol. A 39, 669–674 (1977).

    Article  ADS  Google Scholar 

  42. Yang, F. et al. Microscopic charging and in-gap states in superconducting granular aluminum. Phys. Rev. B 102, 104502 (2020).

    Article  ADS  Google Scholar 

  43. Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nat. Phys. 16, 822–826 (2020).

    Article  Google Scholar 

  44. Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    Article  ADS  Google Scholar 

  45. Samkharadze, N. et al. High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field. Phys. Rev. Applied 5, 044004 (2016).

    Article  ADS  Google Scholar 

  46. Borisov, K. et al. Superconducting granular aluminum resonators resilient to magnetic fields up to 1 Tesla. Appl. Phys. Lett. 117, 120502 (2020).

    Article  ADS  Google Scholar 

  47. Quintana, C. M. et al. Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence. Phys. Rev. Lett. 118, 057702 (2017).

    Article  ADS  Google Scholar 

  48. Reed, M. D. et al. Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett. 96, 203110 (2010).

    Article  ADS  Google Scholar 

  49. von Lüpke, U. et al. Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics. Nat. Phys. 18, 794–799 (2022).

    Article  Google Scholar 

  50. Vool, U. et al. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations. Phys. Rev. Lett. 113, 247001 (2014).

    Article  ADS  Google Scholar 

  51. Nsanzineza, I. & Plourde, B. L. T. Trapping a single vortex and reducing quasiparticles in a superconducting resonator. Phys. Rev. Lett. 113, 117002 (2014).

    Article  ADS  Google Scholar 

  52. Kumar, P. et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices. Phys. Rev. Applied 6, 041001 (2016).

    Article  ADS  Google Scholar 

  53. Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Lisenfeld and W. Wulfhekel for insightful discussions as well as A. Lukashenko and L. Radtke for technical assistance. Funding was provided by the Alexander von Humboldt Foundation in the framework of a Sofja Kovalevskaja award endowed by the German Federal Ministry of Education and Research, and by the European Union’s Horizon 2020 programme under no. 899561 (AVaQus). M.S. and G.C. acknowledge support from the German Ministry of Education and Research (BMBF) within the project GEQCOS (FKZ: 13N15683 and 13N15685). P.P. acknowledges support from the German Ministry of Education and Research (BMBF) within the QUANTERA project SiUCs (FKZ: 13N15209). D.R., S.G. and W.W. acknowledge support from the European Research Council advanced grant MoQuOS (no. 741276). Facilities use was supported by the KIT Nanostructure Service Laboratory. We acknowledge qKit for providing a convenient measurement software framework.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and I.M.P. conceived the experiment. N.D. and Y.C. installed and supervised the real-time microwave electronics. M.S. performed the experiment, analysed the data and developed the theoretical model. I.T. and P.W. designed and fabricated the parametric amplifier. R.G. and O.S. provided the real-time microwave electronics for preliminary experiments. P.P. and N.G. carried out additional measurements for the revised manuscript. M.S. and I.M.P. wrote the manuscript. A.S. and I.M.P. supervised the project. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Martin Spiecker or Ioan M. Pop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Tobias Lindström, Nathan Earnest-Noble and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–M and Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiecker, M., Paluch, P., Gosling, N. et al. Two-level system hyperpolarization using a quantum Szilard engine. Nat. Phys. 19, 1320–1325 (2023). https://doi.org/10.1038/s41567-023-02082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02082-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing