Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable phononic coupling in excitonic quantum emitters

Abstract

Engineering the coupling between fundamental quantum excitations is at the heart of quantum science and technologies. An outstanding case is the creation of quantum light sources in which coupling between single photons and phonons can be controlled and harnessed to enable quantum information transduction. Here we report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons. The quantum emitters are formed in strain-induced quantum dots created in homobilayer WSe2. The colocalization of quantum-confined interlayer excitons and terahertz interlayer breathing-mode phonons, which directly modulates the exciton energy, leads to a uniquely strong phonon coupling to single-photon emission, with a Huang–Rhys factor reaching up to 6.3. The single-photon spectrum of interlayer exciton emission features a single-photon purity >83% and multiple phonon replicas, each heralding the creation of a phonon Fock state in the quantum emitter. Due to the vertical dipole moment of the interlayer exciton, the phonon–photon interaction is electrically tunable to be higher than the exciton and phonon decoherence rate, and hence promises to reach the strong-coupling regime. Our result demonstrates a solid-state quantum excitonic–optomechanical system at the atomic interface of the WSe2 bilayer that emits flying photonic qubits coupled with stationary phonons, which could be exploited for quantum transduction and interconnection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strain-engineered 2D QEs.
Fig. 2: Tunable 2D QEs.
Fig. 3: Single-phonon emission lines.
Fig. 4: Strong and tunable single phonon–exciton coupling.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  2. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article  CAS  Google Scholar 

  3. Vivoli, V. C., Barnea, T., Galland, C. & Sangouard, N. Proposal for an optomechanical Bell test. Phys. Rev. Lett. 116, 070405 (2016).

    Article  Google Scholar 

  4. Tarrago Velez, S., Sudhir, V., Sangouard, N. & Galland, C. Bell correlations between light and vibration at ambient conditions. Sci. Adv. 6, eabb0260 (2020).

    Article  Google Scholar 

  5. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  CAS  Google Scholar 

  6. Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    Article  CAS  Google Scholar 

  7. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article  CAS  Google Scholar 

  8. Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article  CAS  Google Scholar 

  9. Aharonovich, I. & Toth, M. Quantum emitters in two dimensions. Science 358, 170–171 (2017).

    Article  CAS  Google Scholar 

  10. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  11. Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    Article  CAS  Google Scholar 

  12. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  CAS  Google Scholar 

  13. Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  CAS  Google Scholar 

  14. Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article  CAS  Google Scholar 

  15. Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article  Google Scholar 

  16. Sortino, L. et al. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat. Commun. 12, 6063 (2021).

    Article  CAS  Google Scholar 

  17. Kundrotas, J. et al. Impurity-induced Huang–Rhys factor in beryllium δ-doped GaAs/AlAs multiple quantum wells: fractional-dimensional space approach. Semicond. Sci. Technol. 22, 1070–1076 (2007).

    Article  CAS  Google Scholar 

  18. Grosso, G. et al. Low-temperature electron–phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics 7, 1410–1417 (2020).

    Article  CAS  Google Scholar 

  19. Li, D. et al. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun. 12, 954 (2021).

    Article  CAS  Google Scholar 

  20. Ergeçen, E. et al. Magnetically brightened dark electron–phonon bound states in a van der Waals antiferromagnet. Nat. Commun. 13, 98 (2022).

    Article  Google Scholar 

  21. Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).

    Article  CAS  Google Scholar 

  22. Altaiary, M. M. et al. Electrically switchable intervalley excitons with strong two-phonon scattering in bilayer WSe2. Nano Lett. 22, 1829–1835 (2022).

    Article  CAS  Google Scholar 

  23. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  CAS  Google Scholar 

  24. Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).

    Article  CAS  Google Scholar 

  25. Wang, Z., Chiu, Y. H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. https://doi.org/10.1021/acs.nanolett.7b03667 (2018).

  26. Luo, Y., Liu, N., Kim, B., Hone, J. & Strauf, S. Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119–5126 (2020).

    Article  CAS  Google Scholar 

  27. Huang, Z. et al. Spatially indirect intervalley excitons in bilayer WSe2. Phys. Rev. B 105, L041409 (2022).

  28. Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    Article  CAS  Google Scholar 

  29. Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

    Article  CAS  Google Scholar 

  30. Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

    Article  CAS  Google Scholar 

  31. Jin, C. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).

    Article  CAS  Google Scholar 

  32. Li, Z. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun. 10, 2469 (2019).

    Article  Google Scholar 

  33. Paradisanos, I. et al. Efficient phonon cascades in WSe2 monolayers. Nat. Commun. 12, 538 (2021).

    Article  CAS  Google Scholar 

  34. Rivera, P. et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 12, 871 (2021).

    Article  CAS  Google Scholar 

  35. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. https://doi.org/10.1038/nphys2848 (2014).

  36. Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    Article  CAS  Google Scholar 

  37. Lindlau, J. et al. The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nat. Commun. https://doi.org/10.1038/s41467-018-04877-3 (2018).

  38. Aslan, B., Deng, M., Brongersma, M. L. & Heinz, T. F. Strained bilayer WSe2 with reduced exciton–phonon coupling. Phys. Rev. B 101, 15305 (2020).

  39. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  CAS  Google Scholar 

  40. Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. https://doi.org/10.1126/sciadv.aba1830 (2020).

  41. Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article  Google Scholar 

  42. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  CAS  Google Scholar 

  43. Zheng, Y. J. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 13, 6050–6059 (2019).

    Article  CAS  Google Scholar 

  44. Tsai, J.-Y., Pan, J., Lin, H., Bansil, A. & Yan, Q. Antisite defect qubits in monolayer transition metal dichalcogenides. Nat. Commun. 13, 492 (2022).

    Article  CAS  Google Scholar 

  45. Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    Article  CAS  Google Scholar 

  46. Barati, F. et al. Vibronic exciton–phonon states in stack-engineered van der Waals heterojunction photodiodes. Nano Lett. 22, 5751–5758 (2022).

    Article  CAS  Google Scholar 

  47. Grzeszczyk, M. et al. Breathing modes in few-layer MoTe2 activated by h-BN encapsulation. Appl. Phys. Lett. 116, 191601 (2020).

    Article  CAS  Google Scholar 

  48. Yeo, I. et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106–110 (2014).

    Article  CAS  Google Scholar 

  49. Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 https://doi.org/10.1038/s41565-019-0559-y (2019).

  50. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article  CAS  Google Scholar 

  51. Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    Article  Google Scholar 

  52. Anderson, M. D. et al. Two-color pump–probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).

    Article  CAS  Google Scholar 

  53. Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2021).

  54. Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  56. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

  57. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF award number EFMA 1741656, ECCS-2006103, and NSF DMR-1719797). Part of this work was conducted at the Washington Nanofabrication Facility/Molecular Analysis Facility, a National Nanotechnology Coordinated Infrastructure (NNCI) site at the University of Washington with partial support from the NSF via awards NNCI-1542101 and NNCI-2025489. A.R. received funding from NSF award DGE-2140004.

Author information

Authors and Affiliations

Authors

Contributions

A.R., R.P. and M.L. conceived the research. A.R. and R.P. fabricated the devices and performed the measurements. X.Z. and T.C. performed the theoretical analysis. S.C., K.F., M.H. and X.X. assisted with single-photon autocorrelation measurements. A.R. analysed the data. A.R., R.P., T.C. and M.L. co-wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Ruoming Peng or Mo Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Donghai Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–13 and Notes 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripin, A., Peng, R., Zhang, X. et al. Tunable phononic coupling in excitonic quantum emitters. Nat. Nanotechnol. 18, 1020–1026 (2023). https://doi.org/10.1038/s41565-023-01410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01410-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing