Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation

Subjects

Abstract

Although Li–air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of Li2O2 oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of Li2O2 to LiO2, which follows Marcus theory. The second step is dominated by LiO2 disproportionation, forming mostly triplet-state O2. The yield of singlet-state O2 depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of Li2O2 oxidation (+2.96 V).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetic analysis showing that the oxidation of Li2O2 by RMs follows Marcus kinetics.
Fig. 2: Li+ concentration affects the kinetics of Li2O2 oxidation, consistent with Marcus theory.
Fig. 3: Simulations of Li–O2 cell charging, showing that low-voltage RMs cannot sustain moderate charging rates.
Fig. 4: Relationship between RM redox voltage and 1O2 yield.
Fig. 5: The first electron-transfer step to oxidize Li2O2 is the rate-determining step.

Similar content being viewed by others

Data availability

Data that support the main findings of this work are available within the Article and Supplementary Information. Source data are provided with this paper.

Code availability

The Comsol code for simulation of the gas diffusion electrode electrochemical model is available as a compressed file as Supplementary Code 1.

References

  1. Ma, L. et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv. Energy Mater. 8, 1800348 (2018).

    Article  Google Scholar 

  2. Liu, T. et al. Current challenges and routes forward for nonaqueous lithium–air batteries. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00545 (2020).

  3. Kwak, W. J. et al. Lithium–oxygen batteries and related systems: potential, status, and future. ACS Appl. Mater. Interfaces 120, 6626–6683 (2020).

    CAS  Google Scholar 

  4. Wang, D., Mu, X., He, P. & Zhou, H. Materials for advanced Li–O2 batteries: explorations, challenges and prospects. Mater. Today 26, 87–99 (2019).

    Article  CAS  Google Scholar 

  5. Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li–O2 batteries. J. Chem. Phys. 135, 214704 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ. Sci. 6, 2518–2528 (2013).

    Article  CAS  Google Scholar 

  7. Li, F. et al. Superior performance of a Li–O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 5, 1500294 (2015).

    Article  Google Scholar 

  8. Tan, P., Wei, Z. H., Shyy, W., Zhao, T. S. & Zhu, X. B. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy Environ. Sci. 9, 1783–1793 (2016).

    Article  CAS  Google Scholar 

  9. Park, J.-B., Lee, S. H., Jung, H.-G., Aurbach, D. & Sun, Y.-K. Redox mediators for Li–O2 batteries: status and perspectives. Adv. Mater. https://doi.org/10.1002/adma.201704162 (2018).

  10. McCloskey, B. D. & Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li–O2 batteries. ACS Catal. 7, 772–778 (2017).

    Article  CAS  Google Scholar 

  11. Liu, T. et al. The effect of water on quinone redox mediators in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 140, 1428–1437 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Lacey, M. J., Frith, J. T. & Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74–76 (2013).

    Article  CAS  Google Scholar 

  13. Chase, G. et al. Soluble oxygen evolving catalysts for rechargeable metal–air batteries. WO patent 2,011,133 (2011).

  14. Bergner, B. J., Schürmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Article  PubMed  Google Scholar 

  16. Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

    Article  CAS  Google Scholar 

  17. Kundu, D., Black, R., Adams, B. & Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, T., Liao, K., He, P. & Zhou, H. A self-defense redox mediator for efficient lithium–O2 batteries. Energy Environ. Sci. 9, 1024–1030 (2016).

    Article  CAS  Google Scholar 

  19. Yao, K. P. C. et al. Utilization of cobalt bis(terpyridine) metal complex as soluble redox, ediator in Li–O2 batteries. J. Phys. Chem. C 120, 16290–16297 (2016).

    Article  CAS  Google Scholar 

  20. Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci. 2, 2559–2568 (2019).

    Article  Google Scholar 

  21. Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    Article  CAS  Google Scholar 

  22. Schurmann, A., Luerßen, B., Mollenhauer, D., Janek, J. & Der, D. S. Singlet oxygen in electrochemical cells: a critical review of literature and theory. Chem. Rev. 121, 12445–12464 (2021).

    Article  PubMed  Google Scholar 

  23. Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A. & Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).

    Article  CAS  Google Scholar 

  24. Bawol, P. P. et al. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li–O2 cell. Phys. Chem. Chem. Phys. 20, 21447–21456 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Ko, Y. et al. A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. J. Mater. Chem. A 7, 6491–6498 (2019).

    Article  CAS  Google Scholar 

  26. Liang, Z., Zou, Q., Xie, J. & Lu, Y.-C. Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci. 13, 2870–2877 (2020).

    Article  CAS  Google Scholar 

  27. Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Petit, Y. K. et al. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat. Chem. https://doi.org/10.1038/s41557-021-00643-z (2021).

  29. Kwak, W. J. et al. Oxidation stability of organic redox mediators as mobile catalysts in lithium–oxygen batteries. ACS Energy Lett. 5, 2122–2129 (2020).

    Article  CAS  Google Scholar 

  30. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    Article  CAS  Google Scholar 

  31. Bryantsev, V. S., Blanco, M. & Faglioni, F. Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions. J. Phys. Chem. A 114, 8165–8169 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Unwin, P. R. & Bard, A. J. Scanning electrochemical microscopy. 9. Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes. J. Phys. Chem. 95, 7814–7824 (1991).

    Article  CAS  Google Scholar 

  33. Arroyo-Currás, N. & Bard, A. J. Iridium oxidation as observed by surface interrogation scanning electrochemical microscopy. J. Phys. Chem. C 119, 8147–8154 (2015).

    Article  Google Scholar 

  34. Rodríguez-López, J., Minguzzi, A. & Bard, A. J. Reaction of various reductants with oxide films on Pt electrodes as studied by the surface interrogation mode of scanning electrochemical microscopy (SI-SECM): possible validity of a Marcus relationship. J. Phys. Chem. C 114, 18645–18655 (2010).

    Article  Google Scholar 

  35. Miller, J. R., Beitz, J. V. & Huddleston, R. K. Effect of free energy on rates of electron transfer between molecules. J. Am. Chem. Soc. 106, 5057–5068 (1984).

    Article  CAS  Google Scholar 

  36. Krueger, B., Rucker, K. K. & Wittstock, G. Redox mediators for faster lithium peroxide oxidation in a lithium–oxygen cell: a scanning electrochemical microscopy study. ACS Appl. Energy Mater. 5, 3724–3733 (2022).

    Article  CAS  Google Scholar 

  37. Lefrou, C. & Cornut, R. Analytical expressions for quantitative scanning electrochemical microscopy (SECM). Chemphyschem 11, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Cornut, R. & Lefrou, C. New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate. J. Electroanal. Chem. 621, 178–184 (2008).

    Article  CAS  Google Scholar 

  39. Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965).

    Article  CAS  Google Scholar 

  40. Nakabayashi, S., Itoh, K., Fujishima, A. & Honda, K. Electron transfer rates in highly exothermic reactions on semiconductor–electrolyte interfaces, and the deuterium isotope effect. J. Phys. Chem. 87, 5301–5303 (1983).

    Article  CAS  Google Scholar 

  41. Hamann, T. W., Gstrein, F., Brunschwig, B. S. & Lewis, N. S. Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts. J. Am. Chem. Soc. 127, 7815–7824 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Gerbig, O., Merkle, R. & Maier, J. Electron and ion transport in Li2O2. Adv. Mater. 25, 3129–3133 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Barthel, J. & Feuerlein, F. Dielectric properties of propylene carbonate-1,2-dimethoxyethane mixtures and their electrolyte solutions of NaClO4 and Bu4NClO4. Z. Phys. Chem. 148, 157–170 (1986).

    Article  CAS  Google Scholar 

  44. Meini, S. et al. Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Phys. Chem. Chem. Phys. 15, 11478–11493 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Schwenke, K. U., Meini, S., Wu, X., Gasteiger, H. A. & Piana, M. Stability of superoxide radicals in glyme solvents for non-aqueous Li–O2 battery electrolytes. Phys. Chem. Chem. Phys. 15, 11830–11839 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Tong, B., Huang, J., Zhou, Z. & Peng, Z. The salt matters: enhanced reversibility of Li–O2 batteries with a Li[(CF3SO2)(n-C4F9SO2)N]-based electrolyte. Adv. Mater. 30, 1704841 (2018).

    Article  Google Scholar 

  48. Black, R. et al. Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    Article  CAS  Google Scholar 

  50. Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+–O2 redox couple: standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Article  CAS  Google Scholar 

  51. Ihly, R. et al. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nat. Chem. 8, 603–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Farver, O., Marshall, N. M., Wherland, S., Lu, Y. & Pecht, I. Designed azurins show lower reorganization free energies for intraprotein electron transfer. Proc. Natl Acad. Sci. USA 110, 10536–10540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, X., Chen, Y., Johnson, L. R., Jovanov, Z. P. & Bruce, P. G. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).

    Article  CAS  Google Scholar 

  55. Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).

    Article  Google Scholar 

  56. Kwabi, D. G. et al. Chemical instability of dimethyl sulfoxide in lithium–air batteries. J. Phys. Chem. Lett. 5, 2850–2856 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, S. et al. On the incompatibility of lithium–O2 battery technology with CO2. Chem. Sci. 8, 6117–6122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ergun, S., Elliott, C. F., Preet Kaur, A., Parkin, S. R. & Odom, S. A. Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries. Chem. Commun. 50, 5339–5341 (2014).

    Article  CAS  Google Scholar 

  59. Ma, Z. & Bobbitt, J. M. Organic oxoammonium salts. 3. A new convenient method for the oxidation of alcohols to aldehydes and ketones. J. Org. Chem. 56, 6110–6114 (1991).

    Article  CAS  Google Scholar 

  60. Giffard, M. et al. Oxidation of TTF derivatives using (diacetoxyiodo)benzene: a general chemical route toward cation radicals, dications, and nonstoichiometric salts. J. Am. Chem. Soc. 123, 3852–3853 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Reiners, M. et al. Teaching ferrocenium how to relax: a systematic study on spin–lattice relaxation processes in tert-butyl-substituted ferrocenium derivatives. Eur. J. Inorg. Chem. 2017, 388–400 (2017).

    Article  CAS  Google Scholar 

  62. Michaelis, L. & Granick, S. The polymerization of the free radicals of the Wurster dye type: the dimeric resonance bond. J. Am. Chem. Soc. 65, 1747–1755 (1943).

    Article  CAS  Google Scholar 

  63. Dobrynina, T. A., Akhapkina, N. A. & Chuvaev, V. F. Synthesis and properties of lithium peroxide monoperoxyhydrate Li2O2·H2O2. Bull. Acad. Sci. USSR Div. Chem. Sci. 18, 438–440 (1969).

    Article  Google Scholar 

  64. Cornut, R. & Lefrou, C. A unified new analytical approximation for negative feedback currents with a microdisk SECM tip. J. Electroanal. Chem. 608, 59–66 (2007).

    Article  CAS  Google Scholar 

  65. Zhao, Y. H., Abraham, M. H. & Zissimos, A. M. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Nohra, B. et al. Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J. Am. Chem. Soc. 133, 13363–13374 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Y. et al. A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018).

    Article  CAS  Google Scholar 

  68. Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Turro, N. J., Chow, M. F. & Rigaudy, J. Mechanism of thermolysis of endoperoxides of aromatic compounds. Activation parameters, magnetic field, and magnetic isotope effects. J. Am. Chem. Soc. 103, 7218–7224 (1981).

    Article  CAS  Google Scholar 

  70. Adam, W., Kazakov, D. V. & Kazakov, V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 105, 3371–3387 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W. Xu, Y. Qing and H. Bayley from the Department of Chemistry, University of Oxford are gratefully acknowledged for access and technical assistance with the HPLC. L.R.J. thanks the University of Nottingham’s Propulsion Futures Beacon for funding towards this research and acknowledges financial support from the EPSRC (EP/S001611/1) and the Faraday Institution (EP/S003053/1 FIRG014). P.G.B. acknowledges financial support from the EPSRC (EP/M009521/1) and the Henry Royce Institute for Advanced Materials (EP/R00661X/1, EP/S019367/1 and EP/R010145/1).

Author information

Authors and Affiliations

Authors

Contributions

S.A., D.D. and T.N. performed the SECM and pressure-cell measurements and analysed the data. S.A., C.Z., A.P. and S.Y. performed the online mass spectrometry and HPLC experiments. A.J.K., S.A., C.Z., C.C., M.J. and D.D. synthesized, purified and characterized the RMs. S.Y. and T.N. constructed the Li–O2 cells coupled to online mass spectrometry and analysed the data. S.Y., C.C. and X.G. performed the UV-vis measurements. M.L. and A.B. wrote and implemented the computational code for simulations. G.J.R., C.Z. and D.D. performed the online mass spectrometry and NMR measurements. P.G.B., L.R.J., S.A., X.G., C.Z., G.J.R. and P.A. analysed and interpreted the data. P.G.B. wrote the manuscript with contributions from L.R.J., A.B. and S.A. The project was supervised by P.A., N.G., L.R.J. and P.G.B.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Won-Jin Kwak, Daniel Schröder, Yang-Kook Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–12.

Supplementary Code 1

Code for Li–air cell model.

Source data

Source Data Fig. 1

Data of SECM approach curves and Marcus plot data.

Source Data Fig. 2

Marcus plot data for Li-ion concentration effects.

Source Data Fig. 3

Differential electrochemical mass spectrometry data for mediated Li–O2 cell, with simulation data.

Source Data Fig. 4

Data for singlet oxygen yields from HPLC and online mass spectrometry line scans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S., Zor, C., Yang, S. et al. Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Nat. Chem. 15, 1022–1029 (2023). https://doi.org/10.1038/s41557-023-01203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01203-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing