Skip to main content
Log in

The Atiyah-Singer Index Theorem for a Family of Fractional Dirac Operators on Spin Geometry

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The Atiyah-Singer index formula for Dirac operators acting on the space of spinors put across a kind of topological invariant (\(\hat{{A}}\) genus) of a closed spin manifold \({{\mathcal {M}}}\), hence offering a bridge between geometric and analytical aspects of the original spin manifold. In this study, we prove the index theorem for a family of fractional Dirac operators in particular for complex analytic coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility statement

The author confirms the absence of sharing data.

References

  1. Anghel, N.: \(L^{2}\)-index formula for perturbed Dirac operators. Comm. Math. Phys. 128, 77–97 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Singer, I, The index of elliptic operators: III. Ann. Math. 87, 546–604 (1963)

    Google Scholar 

  3. Atiyah, M.F., Bott, B.: A Lefschetz fixed point formula for elliptic differential operators. Bull. Amer. Math. Soc. 72, 245–250 (1966)

    MathSciNet  MATH  Google Scholar 

  4. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes: I’’. Ann. Math. 86, 374–407 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry, I. Math. Proc. Camb. Phil. Soc. 77, 43–69 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Avramidi, I.G.: Dirac operator in matrix geometry. Int. J. Geom. Meth. Mod. Phys. 2, 227–264 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Barrios, B., Montoro, L., Peral, I., Soria, F.: Neumann conditions for the higher order \(s\)-fractional Laplacian \((-\Delta )^{s}u\)with \(s>1\). Nonlinear Anal. 193, 111368 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Berline, N., Getzler, E., Verne, M.: Heat Kernels and Dirac Operators. Springer-Verlag Berlin-Heidelberg, New York (1992)

    MATH  Google Scholar 

  9. Bernstein, S.: A Fractional Dirac operator. In: Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, L., Sauvageot, J.L. (eds), Noncommutative Analysis, Operator Theory and Applications. Operator Theory: Advances and Applications, Vol. 252, Birkhauser, Cham

  10. Botelho, L. C. L.: The Atiyah-Singer index theorem: A heat kernel (PDE’s) proof, Lectures Notes in Applied Differential Equations and Mathematical Physics, pp. 312-322 , World Scientific (2008)

  11. Cabre, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: An extension problem related with the fractional Laplacian. Comm. Part. Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Chamorro, D., Jarrín, O.: Fractional Laplacian, extension problems and Lie groups. Comp. Rend. Math. 353, 517–522 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Chang, S.-Y.A., del Mar-González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Choi, J., Agrawal, P.: Certain unified integrals associated with Bessel functions. Bound. Val. Prob. 2013, 95 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Choi, J., Mathur, S., Purohit, S.D.: Certain new integral formulas involving the generalized Bessel functions. Bull. Korean Math. Soc. 51(4), 995–1003 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Chrysikos, I.: Dirac operators in geometry, Lectures Notes given in the “Summer School on Geometry and Topology”, University of Hradec Králové, Czech Republic

  18. Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Gem. Func. Anal. 5, 174 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Daalhuis, A.B.O.: Confluent hypergeometric function, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, (2010)

  20. Dai, X.: Lectures on Dirac Operators and Index Theory, Lectures given at the Department of Mathematics, University of California, Santa Barbara, January 7, (2015)

  21. D’Ancona, P., Fanelli, L., Schiavone, N.M.: Eigenvalue bounds for non-selfadjoint Dirac operators. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02158-x

    Article  MATH  Google Scholar 

  22. De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)

    MathSciNet  MATH  Google Scholar 

  23. El-Nabulsi, R.A.: Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos Solitons Fractals 42, 2614–2622 (2009)

    ADS  MATH  Google Scholar 

  24. El-Nabulsi, R.A.: Glaeske-Kilbas-Saigo- fractional integration and fractional Dixmier trace. Acta Math. Viet. 37, 149–160 (2012)

    MathSciNet  MATH  Google Scholar 

  25. El-Nabulsi, R.A.: Fractional elliptic operators from a generalized Glaeske-Kilbas-Saigo-Mellin transform. Funct. Anal. Approx. Comp. 7, 29–33 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Faustino, N.: On fundamental solutions of higher-order space-fractional Dirac equations. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7714

    Article  Google Scholar 

  27. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: The Riemann-Liouville case. Compl. Anal. Oper. Theor. 10, 1081–1110 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the Caputo fractional Laplace and Dirac operators, Modern Trends in Hypercomplex Analysis, Trends in Mathematics Series, Bernstein, S., Kahler U., Sabadini, I., Sommen, F. (eds.), Birkhauser, Basel, 191-2, (2016)

  29. Freed, S.D.: The Atiyah-Singer index theorem. Bull. Am. Math. Soc. 58, 517–566 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 2nd edn. CRC Press, Boca Raton, FL (1995)

    MATH  Google Scholar 

  31. Gorska, K., Horzela, A., Penson, K.A., Dattoli, G.: The higher-order heat-type equations via signed Lévy stable and generalized Airy functions. J. Phys. A: Math. Theor. 46, 425001 (2013)

    ADS  MATH  Google Scholar 

  32. Gromov, M., Lawson, M.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Grubb, G., Seeley, R.T.: Zeta and eta functions for Atiyah-Patodi-Singer operators. J. Geom. Anal. 6, 31 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications, J. Appl. Math. 2011, Article ID298628 (2011)

  35. Khan, M.S., Haq, S., Khan, M.A., Fabiano, M.: A study of integral transforms of the generalized Lommel and Wright function. Mil. Tech. Bull. 70, 263–282 (2022)

    Google Scholar 

  36. Kilbas, A.A., Saigo, M., Trujillo, J.J.: On the generalized Wright function. Frac. Cal. Appl. Anal. 5, 437–460 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North Holland Math. Studies 204, Elsevier, (2006)

  38. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry:, vol. 1. John Wiley & Sons, Wiley Classics Library, New York (1963)

  39. Kruglikov, B.S.: Tangent and normal bundles at almost complex geometry. Diff. Geom. Appl. 25, 399–418 (2007)

    MATH  Google Scholar 

  40. Landkof, N.S.: Foundations of modern potential theory, Springer-Verlag, (1973)

  41. Li, C., Li, C., Humphries, Th., Plowman, H.: Remarks on the generalized fractional Laplacian operator. Mathematics 7, 320 (2019)

    Google Scholar 

  42. Lin, S.-D., Lu, C.-H.: Laplace transform for solving some families of fractional differential equations and its applications. Adv. Diff. Equ. 2013, 137 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Lopes de Lima, F.: The Index Formula for Dirac Operators: An Introduction, IMPA, Cornell University, (2003)

  44. Loya, P., Moroianu, S.: Singularities of the eta function of first-order differential operators. An. St. Univ. Ovidius Constanta 20, 59–70 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Mathew, A.: The Dirac Operator, in Nankai Tracts in Mathematics, The Index Theorem and the Heat Equation Method, 195–212. World Scientific, Singapore (2001)

    Google Scholar 

  46. Melrose, R.B., Piazza, P.: An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary. J. Diff. Geom. 45, 287–334 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Can. J. Math. 1, 242–256 (1949)

    MathSciNet  MATH  Google Scholar 

  48. Mondal, S.R., Nisar, K.S.: Certain unified integral formulas involving the generalized modified k-Bessel function of first kind. Comm. Korean Math. Soc. 32, 47–53 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391–404 (1957)

    MathSciNet  MATH  Google Scholar 

  50. Paneva-Konovska, J.: Theorems of the convergence of series in generalized Lommel-Wright functions. Frac. Cal. Appl. Anal. 10, 59–74 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  52. Quan, H., Uhlmann, G.: The Calderon problem for the fractional Dirac operator, arXiv: 2204.00965

  53. Restrepo, J.E., Ruzhansky, M., Suragan, D.: Generalized fractional Dirac operators, arXiv: 2101.11725

  54. Singer, I.M.: Families of Dirac operators with applications with physics. Asterisque S131, 323–340 (1985)

    MathSciNet  Google Scholar 

  55. Siu, Y.T.: Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, In: Hirzebruch, F., Schwermer, J., Suter, S. (eds) Arbeitstagung Bonn . Lecture Notes in Mathematics, vol 1111. Springer, Berlin, Heidelberg (1984)

  56. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  57. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comp. 211, 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Vieira, N.: Fischer Decomposition and Cauchy-Kovalevskaya extension in fractional Clifford analysis: the Riemann-Liouville case. Proc. Edinburgh Math. Soc. 60, 251–272 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Walpuski, T.: Spin Geometry. Berlin University, Humboldt, Spring, Lectures given at the Institute for Mathematics (2018)

Download references

Acknowledgements

The author would like to thank the anonymous referee for useful and valuable suggestions.

Funding

The author would like to thank Chiang Mai University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. The Atiyah-Singer Index Theorem for a Family of Fractional Dirac Operators on Spin Geometry. Adv. Appl. Clifford Algebras 33, 27 (2023). https://doi.org/10.1007/s00006-023-01270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01270-2

Keywords

Mathematics Subject Classification

Navigation