1932

Abstract

Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-023800
2023-06-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-110220-023800.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-023800&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Probst U, Fuhrmann I, Beyer L, Wiggermann P. 2018. Electrochemotherapy as a new modality in interventional oncology: a review. Technol. Cancer Res. Treat. 2018:17
    [Google Scholar]
  2. 2.
    Sokołowska E, Błachnio-Zabielska AU. 2019. A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. Int. J. Mol. Sci. 20:112776
    [Google Scholar]
  3. 3.
    Wichtowski M, Murawa D. 2018. Electrochemotherapy in the treatment of melanoma. Contemp. Oncol. 22:18–13
    [Google Scholar]
  4. 4.
    Strojan P, Grošelj A, Serša G, Plaschke CC, Vermorken JB et al. 2021. Electrochemotherapy in mucosal cancer of the head and neck: a systematic review. Cancers 13:61254
    [Google Scholar]
  5. 5.
    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider P. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:7841–45
    [Google Scholar]
  6. 6.
    Weaver JC, Chizmadzhev YA. 1996. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:2135–60
    [Google Scholar]
  7. 7.
    Mir L, Glass LF, Serša G, Teissie J, Domenge C et al. 1998. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br. J. Cancer 77:122336–42
    [Google Scholar]
  8. 8.
    Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. 2006. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:71409–15
    [Google Scholar]
  9. 9.
    Davalos RV, Mir L, Rubinsky B. 2005. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:2223–31
    [Google Scholar]
  10. 10.
    Arena CB, Sano MB, Rylander MN, Davalos RV. 2010. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans. Biomed. Eng. 58:51474–82
    [Google Scholar]
  11. 11.
    Bhonsle SP, Arena CB, Sweeney DC, Davalos RV. 2015. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed. Eng. Online 14:Suppl. 3S3
    [Google Scholar]
  12. 12.
    Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI. 1988. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta Biomembr. 940:2275–87
    [Google Scholar]
  13. 13.
    Schwan HP. 1957. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209
    [Google Scholar]
  14. 14.
    Rubinsky B. 2009. Irreversible Electroporation New York: Springer
  15. 15.
    Ivorra A, Villemejane J, Mir LM. 2010. Electrical modeling of the influence of medium conductivity on electroporation. Phys. Chem. Chem. Phys. 12:3410055–64
    [Google Scholar]
  16. 16.
    Kotnik T, Bobanović F, Miklavčič D. 1997. Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem. Bioenerg. 43:2285–91
    [Google Scholar]
  17. 17.
    Schoenbach KH, Beebe SJ, Buescher ES. 2001. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:6440–48
    [Google Scholar]
  18. 18.
    DeBruin KA, Krassowska W. 1999. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77:31213–24
    [Google Scholar]
  19. 19.
    Saulis G, Venslauskas MS, Naktinis J. 1991. Kinetics of pore resealing in cell membranes after electroporation. J. Electroanal. Chem. Interfacial Electrochem. 321:11–13
    [Google Scholar]
  20. 20.
    Kotnik T, Rems L, Tarek M, Miklavčič D. 2019. Membrane electroporation and electropermeabilization: mechanisms and models. Annu. Rev. Biophys. 48:63–91
    [Google Scholar]
  21. 21.
    Pavlin M, Kandušer M, Reberšek M, Pucihar G, Hart FX et al. 2005. Effect of cell electroporation on the conductivity of a cell suspension. Biophys. J. 88:64378–90
    [Google Scholar]
  22. 22.
    Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. 2014. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320
    [Google Scholar]
  23. 23.
    Aycock KN, Davalos RV. 2019. Irreversible electroporation: background, theory, and review of recent developments in clinical oncology. Bioelectricity 1:4214–34
    [Google Scholar]
  24. 24.
    Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55
    [Google Scholar]
  25. 25.
    Porteus MH, Carroll D. 2005. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23:8967–73
    [Google Scholar]
  26. 26.
    Cathomen T, Joung JK. 2008. Zinc-finger nucleases: The next generation emerges. Mol. Ther. 16:71200–7
    [Google Scholar]
  27. 27.
    Mátés L, Chuah MK, Belay E, Jerchow B, Manoj N et al. 2009. Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41:6753–61
    [Google Scholar]
  28. 28.
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:6121819–23
    [Google Scholar]
  29. 29.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  30. 30.
    Ramamoorth M, Narvekar A. 2015. Non viral vectors in gene therapy—an overview. J. Clin. Diagn. Res. 9:1GE01–6
    [Google Scholar]
  31. 31.
    van der Loo JC, Wright JF. 2016. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 25:R1R42–52
    [Google Scholar]
  32. 32.
    Stewart MP, Langer R, Jensen KF. 2018. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118:167409–531
    [Google Scholar]
  33. 33.
    Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. 2021. A comprehensive review on intracellular delivery. Adv. Mater. 33:132005363
    [Google Scholar]
  34. 34.
    Liu A, Islam M, Stone N, Varadarajan V, Jeong J et al. 2018. Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules. Mater. Today 21:7703–12
    [Google Scholar]
  35. 35.
    Kang G, Carlson DW, Kang TH, Lee S, Haward SJ et al. 2020. Intracellular nanomaterial delivery via spiral hydroporation. ACS Nano 14:33048–58
    [Google Scholar]
  36. 36.
    Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. 2020. Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano 14:1115094–106
    [Google Scholar]
  37. 37.
    Sharei A, Zoldan J, Adamo A, Sim WY, Cho N et al. 2013. A vector-free microfluidic platform for intracellular delivery. PNAS 110:62082–87
    [Google Scholar]
  38. 38.
    DiTommaso T, Cole JM, Cassereau L, Buggé JA, Hanson JLS et al. 2018. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. PNAS 115:46E10907–14
    [Google Scholar]
  39. 39.
    Yoon S, Kim MG, Chiu CT, Hwang JY, Kim HH et al. 2016. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound. Sci. Rep. 6:20477
    [Google Scholar]
  40. 40.
    O'Dea S, Annibaldi V, Gallagher L, Mulholland J, Molloy EL et al. 2017. Vector-free intracellular delivery by reversible permeabilization. PLOS ONE 12:3e0174779
    [Google Scholar]
  41. 41.
    Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. 2001. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 29:183882–91
    [Google Scholar]
  42. 42.
    Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:7714405–9
    [Google Scholar]
  43. 43.
    Kim JY, Choi JH, Kim SH, Park H, Lee D, Kim GJ 2021. Efficacy of gene modification in placenta-derived mesenchymal stem cells based on nonviral electroporation. Int. J. Stem Cells 14:1112–18
    [Google Scholar]
  44. 44.
    Keller AA, Maeß MB, Schnoor M, Scheiding B, Lorkowski S. 2018. Transfecting macrophages. Macrophages: Methods and Protocols G Rousselet 187–95. Berlin: Springer
    [Google Scholar]
  45. 45.
    Maeß MB, Buers I, Robenek H, Lorkowski S. 2011. Improved protocol for efficient nonviral transfection of premature THP-1 macrophages. Cold Spring Harb. Protoc. 2011:5pdb-prot5612
    [Google Scholar]
  46. 46.
    Scherer O, Maeß MB, Lindner S, Garscha U, Weinigel C et al. 2015. A procedure for efficient non-viral siRNA transfection of primary human monocytes using nucleofection. J. Immunol. Methods 422:118–24
    [Google Scholar]
  47. 47.
    Fong H, Elliott K, Lock LF, Donovan PJ. 2011. Nucleofection of human embryonic stem cells. Human Pluripotent Stem Cells PH Schwartz, RL Wesselschmidt 333–41. Berlin: Springer
    [Google Scholar]
  48. 48.
    Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M et al. 2017. Highly efficient biallelic genome editing of human ES/IPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res. 45:95198–207
    [Google Scholar]
  49. 49.
    Marchenko S, Flanagan L. 2007. Transfecting human neural stem cells with the Amaxa Nucleofector. J. Vis. Exp. 2007:6e240
    [Google Scholar]
  50. 50.
    Bak RO, Dever DP, Porteus MH. 2018. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protoc. 13:2358–76
    [Google Scholar]
  51. 51.
    Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O et al. 2017. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 13:248–57
    [Google Scholar]
  52. 52.
    Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D. 2005. High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11:6985–93
    [Google Scholar]
  53. 53.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPs. Nature 514:7521187–92
    [Google Scholar]
  54. 54.
    Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P et al. 2019. Mechanisms regulating PD-L1 expression on tumor and immune cells. J. Immunother. Cancer 7:1305
    [Google Scholar]
  55. 55.
    Capecchi MR. 1989. Altering the genome by homologous recombination. Science 244:49101288–92
    [Google Scholar]
  56. 56.
    Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC. 2011. Engraftment of human central memory–derived effector CD8+ T cells in immunodeficient mice. Blood 117:61888–98
    [Google Scholar]
  57. 57.
    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:93132–42
    [Google Scholar]
  58. 58.
    Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118:93143–50
    [Google Scholar]
  59. 59.
    Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:4501–10
    [Google Scholar]
  60. 60.
    Ivics Z, Izsvák Z. 2010. The expanding universe of transposon technologies for gene and cell engineering. Mobile DNA 1:125
    [Google Scholar]
  61. 61.
    Field AC, Vink C, Gabriel R, Al-Subki R, Schmidt M et al. 2013. Comparison of lentiviral and Sleeping Beauty mediated αβ T cell receptor gene transfer. PLOS ONE 8:6e68201
    [Google Scholar]
  62. 62.
    Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M et al. 2017. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 31:1186–94
    [Google Scholar]
  63. 63.
    Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM et al. 2018. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175:71958–71.e15
    [Google Scholar]
  64. 64.
    Cortez JT, Montauti E, Shifrut E, Gatchalian J, Zhang Y et al. 2020. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582:7812416–20
    [Google Scholar]
  65. 65.
    Belk JA, Yao W, Ly N, Freitas KA, Chen YT et al. 2022. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40:7768–86.e7
    [Google Scholar]
  66. 66.
    Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J et al. 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384:3252–60
    [Google Scholar]
  67. 67.
    Kou S, Cheng D, Sun F, Hsing IM. 2016. Microfluidics and microbial engineering. Lab Chip 16:3432–46
    [Google Scholar]
  68. 68.
    Garcia PA, Ge Z, Kelley LE, Holcomb SJ, Buie CR. 2017. High efficiency hydrodynamic bacterial electrotransformation. Lab Chip 17:3490–500
    [Google Scholar]
  69. 69.
    Choi SE, Khoo H, Hur SC. 2022. Recent advances in microscale electroporation. Chem. Rev. 122:1311247–86
    [Google Scholar]
  70. 70.
    Wang F, Lin S, Yu Z, Wang Y, Zhang D et al. 2022. Recent advances in microfluidic-based electroporation techniques for cell membranes. Lab Chip 22:142624–46
    [Google Scholar]
  71. 71.
    Lin YC, Jen CM, Huang MY, Wu CY, Lin XZ. 2001. Electroporation microchips for continuous gene transfection. Sens. Actuators B 79:2/3137–43
    [Google Scholar]
  72. 72.
    Geng T, Zhan Y, Wang J, Lu C 2011. Transfection of cells using flow-through electroporation based on constant voltage. Nat. Protoc. 6:81192–208
    [Google Scholar]
  73. 73.
    Geng T, Zhan Y, Wang HY, Witting SR, Cornetta KG, Lu C. 2010. Flow-through electroporation based on constant voltage for large-volume transfection of cells. J. Control. Release 144:191–100
    [Google Scholar]
  74. 74.
    Wang HY, Bhunia AK, Lu C. 2006. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 22:5582–88
    [Google Scholar]
  75. 75.
    Hsi P, Christianson RJ, Dubay RA, Lissandrello CA, Fiering J et al. 2019. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing. Lab Chip 19:182978–92
    [Google Scholar]
  76. 76.
    Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. 2017. Droplet microfluidics for synthetic biology. Lab Chip 17:203388–400
    [Google Scholar]
  77. 77.
    Zhan Y, Wang J, Bao N, Lu C 2009. Electroporation of cells in microfluidic droplets. Anal. Chem. 81:52027–31
    [Google Scholar]
  78. 78.
    Huang PH, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. 2022. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLOS Biol. 20:9e3001727
    [Google Scholar]
  79. 79.
    Boukany PE, Morss A, Liao WC, Henslee B, Jung H et al. 2011. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 6:11747–54
    [Google Scholar]
  80. 80.
    Chen Z, Cao Y, Lin CW, Alvarez S, Oh D et al. 2021. Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. PNAS 118:5e2012229118
    [Google Scholar]
  81. 81.
    Chang L, Bertani P, Gallego-Perez D, Yang Z, Chen F et al. 2016. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale 8:1243–52
    [Google Scholar]
  82. 82.
    Cao Y, Hjort M, Chen H, Birey F, Leal-Ortiz SA et al. 2017. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. PNAS 114:10E1866–74
    [Google Scholar]
  83. 83.
    Schmiderer L, Subramaniam A, Žemaitis K, Bäckström A, Yudovich D et al. 2020. Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. PNAS 117:3521267–73
    [Google Scholar]
  84. 84.
    Giraldo-Vela JP, Kang W, McNaughton RL, Zhang X, Wile BM et al. 2015. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons. Small 11:202386–91
    [Google Scholar]
  85. 85.
    Nathamgari SSP, Pathak N, Lemaitre V, Mukherjee P, Muldoon JJ et al. 2020. Nanofountain probe electroporation enables versatile single-cell intracellular delivery and investigation of postpulse electropore dynamics. Small 16:432002616
    [Google Scholar]
  86. 86.
    Yang R, Lemaître V, Huang C, Haddadi A, McNaughton R, Espinosa HD. 2018. Monoclonal cell line generation and CRISPR/Cas9 manipulation via single-cell electroporation. Small 14:121702495
    [Google Scholar]
  87. 87.
    Xu K, Korpan NN, Niu L. 2012. Modern Cryosurgery for Cancer Singapore: World Sci.
  88. 88.
    Izadifar Z, Izadifar Z, Chapman D, Babyn P. 2020. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J. Clin. Med. 9:2460
    [Google Scholar]
  89. 89.
    Izzo F, Granata V, Grassi R, Fusco R, Palaia R et al. 2019. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist 24:10e990–1005
    [Google Scholar]
  90. 90.
    Sudhakar A. 2009. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther. 1:21–4
    [Google Scholar]
  91. 91.
    Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S et al. 2020. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology 295:2254–72
    [Google Scholar]
  92. 92.
    Kranjc M, Miklavčič D. 2017. Electric field distribution and electroporation threshold. Handbook of Electroporation D Miklavčič 1043–58. Berlin: Springer
    [Google Scholar]
  93. 93.
    Okino M, Mohri H. 1987. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78:121319–21
    [Google Scholar]
  94. 94.
    Maglietti F, Tellado M, De Robertis M, Michinski S, Fernández J et al. 2020. Electroporation as the immunotherapy strategy for cancer in veterinary medicine: state of the art in Latin America. Vaccines 8:3537
    [Google Scholar]
  95. 95.
    Orlowski S, Belehradek J Jr., Paoletti C, Mir LM. 1988. Transient electropermeabilization of cells in culture: increase of the cytotoxicity of anticancer drugs. Biochem. Pharmacol. 37:244727–33
    [Google Scholar]
  96. 96.
    Gehl J, Skovsgaard T, Mir L. 1998. Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 9:4319–26
    [Google Scholar]
  97. 97.
    Mir LM, Orlowski S, Belehradek J Jr., Paoletti C. 1991. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer Clin. Oncol. 27:168–72
    [Google Scholar]
  98. 98.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71:3209–49
    [Google Scholar]
  99. 99.
    Edhemovic I, Brecelj E, Gasljevic G, Marolt Music M, Gorjup V et al. 2014. Intraoperative electrochemotherapy of colorectal liver metastases. J. Surg. Oncol. 110:3320–27
    [Google Scholar]
  100. 100.
    Djokic M, Cemazar M, Popovic P, Kos B, Bosnjak M et al. 2018. Electrochemotherapy as treatment option for hepatocellular carcinoma, a prospective pilot study. Eur. J. Surg. Oncol. 44:5651–57
    [Google Scholar]
  101. 101.
    Edhemovic I, Brecelj E, Cemazar M, Boc N, Trotovsek B et al. 2020. Intraoperative electrochemotherapy of colorectal liver metastases: a prospective phase II study. Eur. J. Surg. Oncol. 46:91628–33
    [Google Scholar]
  102. 102.
    Tarantino L, Busto G, Nasto A, Fristachi R, Cacace L et al. 2017. Percutaneous electrochemotherapy in the treatment of portal vein tumor thrombosis at hepatic hilum in patients with hepatocellular carcinoma in cirrhosis: a feasibility study. World J. Gastroenterol. 23:5906–18
    [Google Scholar]
  103. 103.
    Djokic M, Dezman R, Cemazar M, Stabuc M, Petric M et al. 2020. Percutaneous image guided electrochemotherapy of hepatocellular carcinoma: technological advancement. Radiol. Oncol. 54:3347–52
    [Google Scholar]
  104. 104.
    Kovács A, Bischoff P, Haddad H, Zhou W, Temming S et al. 2022. Long-term comparative study on the local tumour control of different ablation technologies in primary and secondary liver malignancies. J. Pers. Med. 12:3430
    [Google Scholar]
  105. 105.
    Dietrich CF, Ignee A, Braden B, Barreiros AP, Ott M, Hocke M. 2008. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin. Gastroenterol. Hepatol. 6:5590–97
    [Google Scholar]
  106. 106.
    Callery MP, Chang KJ, Fishman EK, Talamonti MS, Traverso LW, Linehan DC. 2009. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann. Surg. Oncol. 16:71727–33
    [Google Scholar]
  107. 107.
    Izzo F, Granata V, Fusco R, D'Alessio V, Petrillo A et al. 2021. Clinical phase I/II study: local disease control and survival in locally advanced pancreatic cancer treated with electrochemotherapy. J. Clin. Med. 10:61305
    [Google Scholar]
  108. 108.
    Martin RCG II. 2015. Irreversible electroporation of stage 3 locally advanced pancreatic cancer: optimal technique and outcomes. J. Vis. Surg. 1:4
    [Google Scholar]
  109. 109.
    Erjavec V, Trotovšek B, Gašljevič G, Bošnjak M, Tratar UL et al. 2020. Safety and feasibility of electrochemotherapy of the pancreas in a porcine model. Pancreas 49:91168–73
    [Google Scholar]
  110. 110.
    Narayanan G, Hosein PJ, Arora G, Barbery KJ, Froud T et al. 2012. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J. Vasc. Interv. Radiol. 23:121613–21
    [Google Scholar]
  111. 111.
    Månsson C, Brahmstaedt R, Nygren P, Nilsson A, Urdzik J, Karlson BM. 2019. Percutaneous irreversible electroporation as first-line treatment of locally advanced pancreatic cancer. Anticancer Res. 39:52509–12
    [Google Scholar]
  112. 112.
    Lorenzo MF, Thomas SC, Kani Y, Hinckley J, Lee M et al. 2019. Temporal characterization of blood–brain barrier disruption with high-frequency electroporation. Cancers 11:121850
    [Google Scholar]
  113. 113.
    Partridge BR, Kani Y, Lorenzo MF, Campelo SN, Allen IC et al. 2022. High-frequency irreversible electroporation (H-FIRE) induced blood–brain barrier disruption is mediated by cytoskeletal remodeling and changes in tight junction protein regulation. Biomedicines 10:61384
    [Google Scholar]
  114. 114.
    Salford LG, Persson B, Brun A, Ceberg C, Kongstad PC, Mir LM. 1993. A new brain tumor therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Commun. 194:2938–43
    [Google Scholar]
  115. 115.
    Agerholm-Larsen B, Iversen HK, Ibsen P, Moller JM, Mahmood F et al. 2011. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res. 71:113753–62
    [Google Scholar]
  116. 116.
    Lorenzo MF, Campelo SN, Arroyo JP, Aycock KN, Hinckley J et al. 2021. An investigation for large volume, focal blood–brain barrier disruption with high-frequency pulsed electric fields. Pharmaceuticals 14:121333
    [Google Scholar]
  117. 117.
    Pizza G, Severini G, Menniti D, De Vinci C, Corrado F. 1984. Tumour regression after intralesional injection of interleukin 2 (IL-2) in bladder cancer. Preliminary report. Int. J. Cancer 34:3359–67
    [Google Scholar]
  118. 118.
    Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI et al. 2008. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26:365896–903
    [Google Scholar]
  119. 119.
    Tebas P, Yang S, Boyer J, Reuschel E, Patel A et al. 2021. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label Phase 1 clinical trial. eClinicalMedicine 31:100689
    [Google Scholar]
  120. 120.
    Johansson DX, Ljungberg K, Kakoulidou M, Liljeström P. 2012. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLOS ONE 7:1e29732
    [Google Scholar]
  121. 121.
    Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. 2021. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv. Drug Deliv. Rev. 170:113–41
    [Google Scholar]
  122. 122.
    Brock RM, Beitel-White N, Davalos RV, Allen IC 2020. Starting a fire without flame: the induction of cell death and inflammation in electroporation-based tumor ablation strategies. Front. Oncol. 10:1235
    [Google Scholar]
  123. 123.
    Campana LG, Miklavčič D, Bertino G, Marconato R, Valpione S et al. 2019. Electrochemotherapy of superficial tumors—current status. Basic principles, operating procedures, shared indications, and emerging applications. Semin. Oncol. 46:173–91
    [Google Scholar]
  124. 124.
    Fernandes P, O'Donovan TR, McKenna SL, Forde PF. 2019. Electrochemotherapy causes caspase-independent necrotic-like death in pancreatic cancer cells. Cancers 11:81177
    [Google Scholar]
  125. 125.
    Calvet CY, Famin D, André FM, Mir LM. 2014. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 3:4e28131
    [Google Scholar]
  126. 126.
    Kim HB, Sung CK, Baik KY, Moon KW, Kim HS et al. 2013. Changes of apoptosis in tumor tissues with time after irreversible electroporation. Biochem. Biophys. Res. Commun. 435:4651–56
    [Google Scholar]
  127. 127.
    Napotnik TB, Polajžer T, Miklavčič D. 2021. Cell death due to electroporation—a review. Bioelectrochemistry 141:107871
    [Google Scholar]
  128. 128.
    Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE et al. 2019. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. eBioMedicine 44:112–25
    [Google Scholar]
  129. 129.
    Mercadal B, Beitel-White N, Aycock KN, Castellví Q, Davalos RV, Ivorra A. 2020. Dynamics of cell death after conventional IRE and H-FIRE treatments. Ann. Biomed. Eng. 48:51451–62
    [Google Scholar]
  130. 130.
    Goggins CA, Khachemoune A. 2019. The use of electrochemotherapy in combination with immunotherapy in the treatment of metastatic melanoma: a focused review. Int. J. Dermatol. 58:8865–70
    [Google Scholar]
  131. 131.
    Sersa G, Miklavčič D, Cemazar M, Belehradek J Jr., Jarm T, Mir LM. 1997. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompotent and immunodeficient mice. Bioelectrochem. Bioenerg. 43:2279–83
    [Google Scholar]
  132. 132.
    Tremble LF, O'Brien MA, Soden DM, Forde PF. 2019. Electrochemotherapy with cisplatin increases survival and induces immunogenic responses in murine models of lung cancer and colorectal cancer. Cancer Lett. 442:475–82
    [Google Scholar]
  133. 133.
    Milevoj N, Tozon N, Licen S, Lampreht Tratar U, Sersa G, Cemazar M 2020. Health-related quality of life in dogs treated with electrochemotherapy and/or interleukin-12 gene electrotransfer. Vet. Med. Sci. 6:3290–98
    [Google Scholar]
  134. 134.
    Cemazar M, Ambrozic Avgustin J, Pavlin D, Sersa G, Poli A et al. 2017. Efficacy and safety of electrochemotherapy combined with peritumoral IL-12 gene electrotransfer of canine mast cell tumours. Vet. Comp. Oncol. 15:2641–54
    [Google Scholar]
  135. 135.
    Yang Y, Moser M, Zhang E, Zhang W, Zhang B. 2018. Optimization of electrode configuration and pulse strength in irreversible electroporation for large ablation volumes without thermal damage. J. Eng. Sci. Med. Diagn. Ther. 1:021002
    [Google Scholar]
  136. 136.
    Aycock KN, Campelo SN, Davalos RV. 2022. A comparative modeling study of thermal mitigation strategies in irreversible electroporation treatments. J. Heat Transf. 144:031206
    [Google Scholar]
  137. 137.
    Serša G, Kranjc S, Čemažar M. 2000. Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int. J. Radiat. Oncol. Biol. Phys. 46:41037–41
    [Google Scholar]
  138. 138.
    Kranjc S, Cemazar M, Grosel A, Sentjurc M, Sersa G. 2005. Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice. BMC Cancer 5:115
    [Google Scholar]
  139. 139.
    West CM. 1992. A potential pitfall in the use of electroporation: cellular radiosensitization by pulsed high-voltage electric fields. Int. J. Radiat. Biol. 61:3329–34
    [Google Scholar]
  140. 140.
    Rezaee Z, Yadollahpour A, Bayati V. 2018. Single intense microsecond electric pulse induces radiosensitization to ionizing radiation: effects of time intervals between electric pulse and ionizing irradiation. Front. Oncol. 8:418
    [Google Scholar]
  141. 141.
    Berridge MJ, Bootman MD, Lipp P. 1998. Calcium—a life and death signal. Nature 395:3645–48
    [Google Scholar]
  142. 142.
    Zhivotovsky B, Orrenius S. 2011. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:3211–21
    [Google Scholar]
  143. 143.
    Cerella C, Diederich M, Ghibelli L. 2010. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int. J. Cell Biol. 2010:546163
    [Google Scholar]
  144. 144.
    Hojman P, Spanggaard I, Olsen CH, Gehl J, Gissel H. 2011. Calcium electrotransfer for termination of transgene expression in muscle. Hum. Gene Ther. 22:6753–60
    [Google Scholar]
  145. 145.
    Krog Frandsen S, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. 2012. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72:61336–41
    [Google Scholar]
  146. 146.
    Falk H, Matthiessen L, Wooler G, Gehl J. 2018. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol. 57:3311–19
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-023800
Loading
/content/journals/10.1146/annurev-bioeng-110220-023800
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error