1932

Abstract

Reactions at solid–water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores/cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid–water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083022-030802
2023-04-24
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-083022-030802.html?itemId=/content/journals/10.1146/annurev-physchem-083022-030802&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang Y. 2014. Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chem. Geol. 378:1–23
    [Google Scholar]
  2. 2.
    Caro J. 2016. Hierarchy in inorganic membranes. Chem. Soc. Rev. 45:3468–78
    [Google Scholar]
  3. 3.
    Tournassat C, Steefel CI, Bourg IC, Bergaya F. 2015. Natural and Engineered Clay Barriers Amsterdam: Elsevier
  4. 4.
    Kosinov N, Gascon J, Kapteijn F, Hensen EJ. 2016. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 499:65–79
    [Google Scholar]
  5. 5.
    Epsztein R, DuChanois RM, Ritt CL, Noy A, Elimelech M. 2020. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15:426–36
    [Google Scholar]
  6. 6.
    Wu J, Li Z, Tan H, Du S, Liu T et al. 2020. Highly selective separation of rare earth elements by Zn-BTC metal–organic framework/nanoporous graphene via in situ green synthesis. Anal. Chem. 93:1732–39
    [Google Scholar]
  7. 7.
    Na K, Somorjai GA. 2015. Hierarchically nanoporous zeolites and their heterogeneous catalysis: current status and future perspectives. Catal. Lett. 145:193–213
    [Google Scholar]
  8. 8.
    An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. 2018. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12:12932–40
    [Google Scholar]
  9. 9.
    Albrecht T. 2019. Single-molecule analysis with solid-state nanopores. Annu. Rev. Anal. Chem. 12:371–87
    [Google Scholar]
  10. 10.
    Baxter JB, Richter C, Schmuttenmaer CA. 2014. Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem. 65:423–47
    [Google Scholar]
  11. 11.
    Zhou K, Perry JM, Jacobson SC. 2011. Transport and sensing in nanofluidic devices. Annu. Rev. Anal. Chem. 4:321–41
    [Google Scholar]
  12. 12.
    Senanayake HS, Greathouse JA, Ilgen AG, Thompson WH. 2021. Simulations of the IR and Raman spectra of water confined in amorphous silica slit pores. J. Chem. Phys. 154:104503
    [Google Scholar]
  13. 13.
    Senapati S, Chandra A. 2001. Dielectric constant of water confined in a nanocavity. J. Phys. Chem. B 105:5106–9
    [Google Scholar]
  14. 14.
    Tsukahara T, Hibara A, Ikeda Y, Kitamori T. 2007. NMR study of water molecules confined in extended nanospaces. Angew. Chem. 119:1199–202
    [Google Scholar]
  15. 15.
    Zhang MS, Mao H, Jin ZH. 2021. Molecular dynamic study on structural and dynamic properties of water, counter-ions and polyethylene glycols in Na-montmorillonite interlayers. Appl. Surf. Sci. 536:147700
    [Google Scholar]
  16. 16.
    Baum M, Rieutord F, Juranyi F, Rey C, Rébiscoul D. 2019. Dynamical and structural properties of water in silica nanoconfinement: impact of pore size, ion nature, and electrolyte concentration. Langmuir 35:10780–94
    [Google Scholar]
  17. 17.
    Musat R, Renault JP, Candelaresi M, Palmer DJ, Le Caër S et al. 2008. Finite size effects on hydrogen bonds in confined water. Angew. Chem. Int. Ed. 47:8033–35
    [Google Scholar]
  18. 18.
    Brubach J-B, Mermet A, Filabozzi A, Gerschel A, Lairez D et al. 2001. Dependence of water dynamics upon confinement size. J. Phys. Chem. B 105:430–35
    [Google Scholar]
  19. 19.
    Knight AW, Ilani-Kashkouli P, Harvey JA, Greathouse JA, Ho TA et al. 2020. Interfacial reactions of Cu(II) adsorption and hydrolysis driven by nano-scale confinement. Environ. Sci. Nano 7:68–80
    [Google Scholar]
  20. 20.
    Knight AW, Kalugin NG, Coker E, Ilgen AG. 2019. Water properties under nano-scale confinement. Sci. Rep. 9:8246
    [Google Scholar]
  21. 21.
    Israelachvili JN. 2011. Intermolecular and Surface Forces Cambridge, MA: Academic
  22. 22.
    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P et al. 2018. Anomalously low dielectric constant of confined water. Science 360:1339–42
    [Google Scholar]
  23. 23.
    Brovchenko I, Oleinikova A. 2008. Interfacial and Confined Water Amsterdam: Elsevier
  24. 24.
    Morikawa K, Kazoe Y, Mawatari K, Tsukahara T, Kitamori T. 2015. Dielectric constant of liquids confined in the extended nanospace measured by a streaming potential method. Anal. Chem. 87:1475–79
    [Google Scholar]
  25. 25.
    Debye P. 1923. The theory of electrolytes. I. The lowering of the freezing point and related occurrences. Z. Phys. 24:305–24
    [Google Scholar]
  26. 26.
    Levinger NE. 2002. Water in confinement. Science 298:1722–23
    [Google Scholar]
  27. 27.
    Takei T, Mukasa K, Kofuji M, Fuji M, Watanabe T et al. 2000. Changes in density and surface tension of water in silica pores. Colloid Polym. Sci. 278:475–80
    [Google Scholar]
  28. 28.
    Le Caër S, Pin S, Esnouf S, Raffy Q, Renault JP et al. 2011. A trapped water network in nanoporous material: the role of interfaces. Phys. Chem. Chem. Phys. 13:17658–66
    [Google Scholar]
  29. 29.
    Marti J, Nagy G, Guardia E, Gordillo M. 2006. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties. J. Phys. Chem. B 110:23987–94
    [Google Scholar]
  30. 30.
    Koga K, Gao G, Tanaka H, Zeng XC. 2001. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–5
    [Google Scholar]
  31. 31.
    Striolo A, Chialvo A, Gubbins K, Cummings P. 2005. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 122:234712
    [Google Scholar]
  32. 32.
    Hirunsit P, Balbuena PB. 2007. Effects of confinement on water structure and dynamics: a molecular simulation study. J. Phys. Chem. C 111:1709–15
    [Google Scholar]
  33. 33.
    Cicero G, Grossman JC, Schwegler E, Gygi F, Galli G. 2008. Water confined in nanotubes and between graphene sheets: a first principle study. J. Am. Chem. Soc. 130:1871–78
    [Google Scholar]
  34. 34.
    Rasaiah JC, Garde S, Hummer G. 2008. Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59:713–40
    [Google Scholar]
  35. 35.
    Alexiadis A, Kassinos S. 2008. Molecular simulation of water in carbon nanotubes. Chem. Rev. 108:5014–34
    [Google Scholar]
  36. 36.
    Chakraborty S, Kumar H, Dasgupta C, Maiti PK 2017. Confined water: structure, dynamics, and thermodynamics. Acc. Chem. Res. 50:2139–46
    [Google Scholar]
  37. 37.
    Ruiz Pestana L, Felberg LE, Head-Gordon T. 2018. Coexistence of multilayered phases of confined water: the importance of flexible confining surfaces. ACS Nano 12:448–54
    [Google Scholar]
  38. 38.
    Zaragoza A, González MA, Joly L, López-Montero I, Canales M et al. 2019. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys. Chem. Chem. Phys. 21:13653–67
    [Google Scholar]
  39. 39.
    Motevaselian MH, Aluru NR. 2020. Universal reduction in dielectric response of confined fluids. ACS Nano 14:12761–70
    [Google Scholar]
  40. 40.
    Ortiz-Young D, Chiu H-C, Kim S, Voïtchovsky K, Riedo E. 2013. The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4:2482
    [Google Scholar]
  41. 41.
    Sansom MS, Biggin PC. 2001. Water at the nanoscale. Nature 414:157–59
    [Google Scholar]
  42. 42.
    Mattia D, Calabrò F. 2012. Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions. Microfluid. Nanofluidics 13:125–30
    [Google Scholar]
  43. 43.
    Parsons DF, Boström M, Nostro PL, Ninham BW. 2011. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys. Chem. Chem. Phys. 13:12352–67
    [Google Scholar]
  44. 44.
    Hunter RJ. 2001. Foundations of Colloid Science Oxford, UK: Oxford Univ. Press
  45. 45.
    Acuña SM, Toledo PG. 2011. Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions. J. Colloid Interface Sci. 361:397–99
    [Google Scholar]
  46. 46.
    Li D, Chun J, Xiao D, Zhou W, Cai H et al. 2017. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment. PNAS 114:7537–42
    [Google Scholar]
  47. 47.
    Prakash A, Pfaendtner J, Chun J, Mundy CJ. 2017. Quantifying the molecular-scale aqueous response to the mica surface. J. Phys. Chem. C 121:18496–504
    [Google Scholar]
  48. 48.
    Zachariah Z, Espinosa-Marzal RM, Heuberger MP. 2017. Ion specific hydration in nano-confined electrical double layers. J. Colloid Interface Sci. 506:263–70
    [Google Scholar]
  49. 49.
    van Lin SR, Grotz KK, Siretanu I, Schwierz N, Mugele F. 2019. Ion-specific and pH-dependent hydration of mica–electrolyte interfaces. Langmuir 35:5737–45
    [Google Scholar]
  50. 50.
    Gilbert B, Comolli LR, Tinnacher RM, Kunz M, Banfield JF. 2015. Formation and restacking of disordered smectite osmotic hydrates. Clays Clay Miner 63:432–42
    [Google Scholar]
  51. 51.
    Ho TA, Criscenti LJ. 2021. Molecular-level understanding of gibbsite particle aggregation in water. J. Colloid Interface Sci. 600:310–17
    [Google Scholar]
  52. 52.
    Gonçalvès J, Rousseau-Gueutin P, Revil A. 2007. Introducing interacting diffuse layers in TLM calculations: a reappraisal of the influence of the pore size on the swelling pressure and the osmotic efficiency of compacted bentonites. J. Colloid Interface Sci. 316:92–99
    [Google Scholar]
  53. 53.
    Gonçalvès J, Rousseau-Gueutin P. 2008. Molecular-scale model for the mass density of electrolyte solutions bound by clay surfaces: application to bentonites. J. Colloid Interface Sci. 320:590–98
    [Google Scholar]
  54. 54.
    Shen X, Bourg IC. 2021. Molecular dynamics simulations of the colloidal interaction between smectite clay nanoparticles in liquid water. J. Colloid Interface Sci. 584:610–21
    [Google Scholar]
  55. 55.
    Dragulet F, Goyal A, Ioannidou K, Pellenq RJ-M, Del Gado E. 2022. Ion specificity of confined ion-water structuring and nanoscale surface forces in clays. arXiv:2204.01631 [cond-mat.soft]
  56. 56.
    Pezzotti S, Serva A, Sebastiani F, Brigiano FS, Galimberti DR et al. 2021. Molecular fingerprints of hydrophobicity at aqueous interfaces from theory and vibrational spectroscopies. J. Phys. Chem. Lett. 12:3827–36
    [Google Scholar]
  57. 57.
    Rovere M, Ricci M, Vellati D, Bruni F. 1998. A molecular dynamics simulation of water confined in a cylindrical SiO2 pore. J. Chem. Phys. 108:9859–67
    [Google Scholar]
  58. 58.
    Rieth AJ, Hunter KM, Dincă M, Paesani F. 2019. Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites. Nat. Commun. 10:4771
    [Google Scholar]
  59. 59.
    Hartnig C, Witschel W, Spohr E, Gallo P, Ricci MA, Rovere M. 2000. Modifications of the hydrogen bond network of liquid water in a cylindrical SiO2 pore. J. Mol. Liq. 85:127–37
    [Google Scholar]
  60. 60.
    Gordillo M, Martí J. 2000. Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329:341–45
    [Google Scholar]
  61. 61.
    Medders GR, Paesani F. 2014. Water dynamics in metal–organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J. Phys. Chem. Lett. 5:2897–902
    [Google Scholar]
  62. 62.
    Hare D, Sorensen C. 1992. Interoscillator coupling effects on the OH stretching band of liquid water. J. Chem. Phys. 96:13–22
    [Google Scholar]
  63. 63.
    Knight AW, Kalugin NG, Coker E, Ilgen AG. 2019. Water properties under nano-scale confinement. Sci. Rep. 9:8246
    [Google Scholar]
  64. 64.
    Malfait B, Moréac A, Jani A, Lefort R, Huber P et al. 2022. Structure of water at hydrophilic and hydrophobic interfaces: Raman spectroscopy of water confined in periodic mesoporous (organo)silicas. J. Phys. Chem. C 126:3520–31
    [Google Scholar]
  65. 65.
    Rother G, Gautam S, Liu T, Cole DR, Busch A, Stack AG. 2022. Molecular structure of adsorbed water phases in silica nanopores. J. Phys. Chem. C 126:2885–95
    [Google Scholar]
  66. 66.
    Munñoz-Santiburcio D, Marx D 2021. Confinement-controlled aqueous chemistry within nanometric slit pores: Focus review. Chem. Rev. 121:6293–320
    [Google Scholar]
  67. 67.
    Teschke O, Ceotto G, De Souza E. 2000. Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy. Chem. Phys. Lett. 326:328–34
    [Google Scholar]
  68. 68.
    Matyushov DV. 2021. Dielectric susceptibility of water in the interface. J. Phys. Chem. B 125:8282–93
    [Google Scholar]
  69. 69.
    Loche P, Ayaz C, Wolde-Kidan A, Schlaich A, Netz RR. 2020. Universal and nonuniversal aspects of electrostatics in aqueous nanoconfinement. J. Phys. Chem. B 124:4365–71
    [Google Scholar]
  70. 70.
    Ballenegger V, Hansen J-P. 2005. Dielectric permittivity profiles of confined polar fluids. J. Chem. Phys. 122:114711
    [Google Scholar]
  71. 71.
    Jalali H, Ghorbanfekr H, Hamid I, Neek-Amal M, Rashidi R, Peeters F. 2020. Out-of-plane permittivity of confined water. Phys. Rev. E 102:022803
    [Google Scholar]
  72. 72.
    Jeanmairet G, Rotenberg B, Borgis D, Salanne M. 2019. Study of a water-graphene capacitor with molecular density functional theory. J. Chem. Phys. 151:124111
    [Google Scholar]
  73. 73.
    Jorn R, Kumar R, Abraham DP, Voth GA. 2013. Atomistic modeling of the electrode–electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J. Phys. Chem. C 117:3747–61
    [Google Scholar]
  74. 74.
    Hu B, Zhu H. 2021. Anomalous dielectric behaviors of electrolyte solutions confined in graphene oxide nanochannels. Sci. Rep. 11:18689
    [Google Scholar]
  75. 75.
    Jalali H, Lotfi E, Boya R, Neek-Amal M. 2021. Abnormal dielectric constant of nanoconfined water between graphene layers in the presence of salt. J. Phys. Chem. B 125:1604–10
    [Google Scholar]
  76. 76.
    Azam MS, Weeraman CN, Gibbs-Davis JM. 2012. Specific cation effects on the bimodal acid–base behavior of the silica/water interface. J. Phys. Chem. Lett. 3:1269–74
    [Google Scholar]
  77. 77.
    Pfeiffer-Laplaud M, Gaigeot M-P, Sulpizi M. 2016. pKa at quartz/electrolyte interfaces. J. Phys. Chem. Lett. 7:3229–34
    [Google Scholar]
  78. 78.
    Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C et al. 2021. Structure and dynamics of nanoconfined water and aqueous solutions. Eur. Phys. J. E 44:136
    [Google Scholar]
  79. 79.
    Muñoz-Santiburcio D, Wittekindt C, Marx D. 2013. Nanoconfinement effects on hydrated excess protons in layered materials. Nat. Commun. 4:2349
    [Google Scholar]
  80. 80.
    Di Pino S, Sirkin YAP, Morzan UN, Sánchez VM, Hassanali A, Scherlis DA. 2021. Water self-dissociation under the microscope: the Kw in confinement. arXiv:2104.12513 [cond-mat.soft]
  81. 81.
    Hashikawa Y, Hasegawa S, Murata Y. 2018. A single but hydrogen-bonded water molecule confined in an anisotropic subnanospace. Chem. Commun. 54:13686–89
    [Google Scholar]
  82. 82.
    Liu X, Lu X, Wang R, Meijer EJ, Zhou H. 2011. Acidities of confined water in interlayer space of clay minerals. Geochim. Cosmochim. Acta 75:4978–86
    [Google Scholar]
  83. 83.
    Sirkin YAP, Hassanali A, Scherlis DA. 2018. One-dimensional confinement inhibits water dissociation in carbon nanotubes. J. Phys. Chem. Lett. 9:5029–33
    [Google Scholar]
  84. 84.
    Grifoni E, Piccini G, Lercher JA, Glezakou V-A, Rousseau R, Parrinello M. 2021. Confinement effects and acid strength in zeolites. Nat. Commun. 12:2630
    [Google Scholar]
  85. 85.
    Le Caër S, Pignié M-C, Berrod Q, Grzimek V, Russina M et al. 2021. Dynamics in hydrated inorganic nanotubes studied by neutron scattering: towards nanoreactors in water. Nanoscale Adv 3:789–99
    [Google Scholar]
  86. 86.
    Marry V, Dubois E, Malikova N, Breu J, Haussler W. 2013. Anisotropy of water dynamics in clays: insights from molecular simulations for experimental QENS analysis. J. Phys. Chem. C 117:15106–15
    [Google Scholar]
  87. 87.
    Michot LJ, Ferrage E, Delville, Jimenez-Ruiz M 2016. Influence of layer charge, hydration state and cation nature on the collective dynamics of interlayer water in synthetic swelling clay minerals. Appl. Clay Sci. 119:375–84
    [Google Scholar]
  88. 88.
    Asaad A, Hubert F, Ferrage E, Dabat T, Paineau E et al. 2021. Role of interlayer porosity and particle organization in the diffusion of water in swelling clays. Appl. Clay Sci. 207:106089
    [Google Scholar]
  89. 89.
    Porion P, Warmont F, Faugère AM, Rollet A-L, Dubois E et al. 2015. 133Cs nuclear magnetic resonance relaxometry as a probe of the mobility of cesium cations confined within dense clay sediments. J. Phys. Chem. C 119:15360–72
    [Google Scholar]
  90. 90.
    Nanda R, Bowers GM, Loganathan N, Burton SD, Kirkpatrick RJ. 2019. Temperature dependent structure and dynamics in smectite interlayers: 23Na MAS NMR spectroscopy of Na-hectorite. RSC Adv 9:12755–65
    [Google Scholar]
  91. 91.
    Holmboe M, Bourg IC. 2014. Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature. J. Phys. Chem. C 118:1001–13
    [Google Scholar]
  92. 92.
    Collin M, Gin S, Dazas B, Mahadevan T, Du JC, Bourg IC. 2018. Molecular dynamics simulations of water structure and diffusion in a 1 nm diameter silica nanopore as a function of surface charge and alkali metal counterion identity. J. Phys. Chem. C 122:17764–76
    [Google Scholar]
  93. 93.
    Greathouse JA, Hart DB, Bowers GM, Kirkpatrick RJ, Cygan RT. 2015. Molecular simulation of structure and diffusion at smectite–water interfaces: using expanded clay interlayers as model nanopores. J. Phys. Chem. C 119:17126–36
    [Google Scholar]
  94. 94.
    Simonnin P, Marry V, Noetinger B, Nieto-Draghi C, Rotenberg B. 2018. Mineral- and ion-specific effects at clay-water interfaces: structure, diffusion, and hydrodynamics. J. Phys. Chem. C 122:18484–92
    [Google Scholar]
  95. 95.
    Botan A, Rotenberg B, Marry V, Turq P, Noetinger B. 2011. Hydrodynamics in clay nanopores. J. Phys. Chem. C 115:16109–15
    [Google Scholar]
  96. 96.
    Martins DMS, Molinari M, Gonçalves MA, Mirão JP, Parker SC. 2014. Toward modeling clay mineral nanoparticles: the edge surfaces of pyrophyllite and their interaction with water. J. Phys. Chem. C 118:27308–17
    [Google Scholar]
  97. 97.
    Greathouse JA, Cygan RT, Fredrich JT, Jerauld GR. 2016. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. J. Phys. Chem. C 120:1640–49
    [Google Scholar]
  98. 98.
    González Sánchez F, Gimmi T, Jurányi F, Van Loon L, Diamond LW 2009. Linking the diffusion of water in compacted clays at two different time scales: tracer through-diffusion and quasielastic neutron scattering. Environ. Sci. Technol. 43:3487–93
    [Google Scholar]
  99. 99.
    Salles F, Douillard JM, Bildstein O, El Ghazi S, Prelot B et al. 2015. Diffusion of interlayer cations in swelling clays as a function of water content: case of montmorillonites saturated with alkali cations. J. Phys. Chem. C 119:10370–78
    [Google Scholar]
  100. 100.
    Tinnacher RM, Holmboe M, Tournassat C, Bourg IC, Davis JA. 2016. Ion adsorption and diffusion in smectite: molecular, pore, and continuum scale views. Geochim. Cosmochim. Acta 177:130–49
    [Google Scholar]
  101. 101.
    Underwood TR, Bourg IC. 2020. Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles. J. Phys. Chem. C 124:3702–14
    [Google Scholar]
  102. 102.
    Scalfi L, Fraux G, Boutin A, Coudert FX. 2018. Structure and dynamics of water confined in imogolite nanotubes. Langmuir 34:6748–56
    [Google Scholar]
  103. 103.
    González RI, Rojas-Nunez J, Valencia FJ, Munoz F, Baltazar SE et al. 2020. Imogolite in water: simulating the effects of nanotube curvature on structure and dynamics. Appl. Clay Sci. 191:105582
    [Google Scholar]
  104. 104.
    Fernandez-Martinez A, Tao JH, Wallace AF, Bourg IC, Johnson MR et al. 2020. Curvature-induced hydrophobicity at imogolite-water interfaces. Environ. Sci. Nano 7:2759–72
    [Google Scholar]
  105. 105.
    Faraone A, Liu K-H, Mou C-Y, Zhang Y, Chen S-H. 2009. Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. J. Chem. Phys. 130:134512
    [Google Scholar]
  106. 106.
    Briman IM, Rébiscoul D, Diat O, Zanotti J-M, Jollivet P et al. 2012. Impact of pore size and pore surface composition on the dynamics of confined water in highly ordered porous silica. J. Phys. Chem. C 116:7021–28
    [Google Scholar]
  107. 107.
    Ho TA, Argyris D, Cole DR, Striolo A. 2012. Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir 28:1256–66
    [Google Scholar]
  108. 108.
    Nelson J, Bargar JR, Wasylenki L, Brown GE Jr., Maher K. 2018. Effects of nano-confinement on Zn(II) adsorption to nanoporous silica. Geochim. Cosmochim. Acta 240:80–97
    [Google Scholar]
  109. 109.
    Ilgen AG, Kabengi N, Leung K, Ilani-Kashkouli P, Knight AW, Loera L. 2021. Defining silica–water interfacial chemistry under nanoconfinement using lanthanides. Environ. Sci. Nano 8:432–43
    [Google Scholar]
  110. 110.
    James RO, Healy TW. 1972. Adsorption of hydrolyzable metal ions at the oxide–water interface. III. A thermodynamic model of adsorption. J. Colloid Interface Sci. 40:65–81
    [Google Scholar]
  111. 111.
    Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM et al. 2021. Advanced materials for energy-water systems: the central role of water/solid interfaces in adsorption, reactivity, and transport. Chem. Rev. 121:9450–501
    [Google Scholar]
  112. 112.
    Shefer I, Peer-Haim O, Leifman O, Epsztein R. 2021. Enthalpic and entropic selectivity of water and small ions in polyamide membranes. Environ. Sci. Technol. 55:14863–75
    [Google Scholar]
  113. 113.
    Knight AW, Tigges A, Ilgen A. 2018. Adsorption of copper (II) on mesoporous silica: the effect of nano-scale confinement. Geochem. Trans. 19:13
    [Google Scholar]
  114. 114.
    Ferreira D, Schulthess C. 2011. The nanopore inner sphere enhancement effect on cation adsorption: sodium, potassium, and calcium. Soil Sci. Soc. Am. J. 75:389–96
    [Google Scholar]
  115. 115.
    Ferreira D, Schulthess C, Kabengi N. 2013. Calorimetric evidence in support of the nanopore inner sphere enhancement theory on cation adsorption. Soil Sci. Soc. Am. J. 77:94–99
    [Google Scholar]
  116. 116.
    Mohammad AW, Teow Y, Ang W, Chung Y, Oatley-Radcliffe D, Hilal N. 2015. Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–54
    [Google Scholar]
  117. 117.
    Sujanani R, Landsman MR, Jiao S, Moon JD, Shell MS et al. 2020. Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. ACS Macro Lett 9:1709–17
    [Google Scholar]
  118. 118.
    Bowen WR, Welfoot JS. 2002. Modelling the performance of membrane nanofiltration—critical assessment and model development. Chem. Eng. Sci. 57:1121–37
    [Google Scholar]
  119. 119.
    Schulthess C, Taylor R, Ferreira D. 2011. The nanopore inner sphere enhancement effect on cation adsorption: sodium and nickel. Soil Sci. Soc. Am. J. 75:378–88
    [Google Scholar]
  120. 120.
    Ferreira DR, Schulthess CP, Giotto MV. 2012. An investigation of strong sodium retention mechanisms in nanopore environments using nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 46:300–6
    [Google Scholar]
  121. 121.
    Ferreira DR, Schulthess CP, Amonette JE, Walter ED. 2012. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals. Clays Clay Miner 60:588–98
    [Google Scholar]
  122. 122.
    Knight AW, Ilani-Kashkouli P, Harvey JA, Greathouse JA, Ho TA et al. 2020. Interfacial reactions of Cu(II) adsorption and hydrolysis driven by nano-scale confinement. Environ. Sci. Nano 7:68–80
    [Google Scholar]
  123. 123.
    D'Angelo P, Spezia R 2012. Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. Chem. A Eur. J. 18:11162–78
    [Google Scholar]
  124. 124.
    Greathouse JA, Duncan TJ, Ilgen AG, Harvey JA, Criscenti LJ, Knight AW. 2021. Effects of nanoconfinement and surface charge on iron adsorption on mesoporous silica. Environ. Sci. Nano 8:1992–2005
    [Google Scholar]
  125. 125.
    Prelot B, Lantenois S, Chorro C, Charbonnel M-C, Zajac J, Douillard JM. 2011. Effect of nanoscale pore space confinement on cadmium adsorption from aqueous solution onto ordered mesoporous silica: a combined adsorption and flow calorimetry study. J. Phys. Chem. C 115:19686–95
    [Google Scholar]
  126. 126.
    Sun Y, Yang S, Sheng G, Guo Z, Tan X et al. 2011. Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep. Purif. Technol. 83:196–203
    [Google Scholar]
  127. 127.
    Jung HB, Boyanov MI, Konishi H, Sun Y, Mishra B et al. 2012. Redox behavior of uranium at the nanoporous aluminum oxide-water interface: implications for uranium remediation. Environ. Sci. Technol. 46:7301–9
    [Google Scholar]
  128. 128.
    Wu D, Navrotsky A. 2013. Small molecule–silica interactions in porous silica structures. Geochim. Cosmochim. Acta 109:38–50
    [Google Scholar]
  129. 129.
    Wang Y, Bryan C, Xu H, Pohl P, Yang Y, Brinker CJ 2002. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina. J. Colloid Interface Sci. 254:23–30
    [Google Scholar]
  130. 130.
    Leung K. 2021. First-principles Molecular Dynamics maps out complete mineral surface acidity landscape. Am. Mineral. 106:1705–6
    [Google Scholar]
  131. 131.
    Xu L, Jiang D-E. 2021. Proton dynamics in water confined at the interface of the graphene–MXene heterostructure. J. Chem. Phys. 155:234707
    [Google Scholar]
  132. 132.
    Ganeshan K, Shin YK, Osti NC, Sun Y, Prenger K et al. 2020. Structure and dynamics of aqueous electrolytes confined in 2D-TiO2/Ti3C2T2 MXene heterostructures. ACS Appl. Mater. Interfaces 12:58378–89
    [Google Scholar]
  133. 133.
    Kobayashi T, Sun Y, Prenger K, Jiang D-e, Naguib M, Pruski M. 2020. Nature of terminating hydroxyl groups and intercalating water in Ti3C2Tx MXenes: a study by 1H solid-state NMR and DFT calculations. J. Phys. Chem. C 124:13649–55
    [Google Scholar]
  134. 134.
    Zhan C, Sun Y, Aydin F, Wang YM, Pham TA. 2021. Confinement effects on the solvation structure of solvated alkaline metal cations in a single-digit 1T-MoS2 nanochannel: a first-principles study. J. Chem. Phys. 154:164706 Erratum. 2021. J. Chem. Phys. 154:209903
    [Google Scholar]
  135. 135.
    Rodriguez J, Elola MD, Laria D. 2009. Polar mixtures under nanoconfinement. J. Phys. Chem. B 113:12744–49
    [Google Scholar]
  136. 136.
    Patra S, Pandey AK, Sarkar SK, Goswami A 2014. Wonderful nanoconfinement effect on redox reaction equilibrium. RSC Adv. 4:33366–69
    [Google Scholar]
  137. 137.
    Li L, Kohler F, Røyne A, Dysthe DK. 2017. Growth of calcite in confinement. Crystals 7:361
    [Google Scholar]
  138. 138.
    Jiang Q, Ward MD. 2014. Crystallization under nanoscale confinement. Chem. Soc. Rev. 43:2066–79
    [Google Scholar]
  139. 139.
    Argyris D, Cole DR, Striolo A. 2010. Ion-specific effects under confinement: the role of interfacial water. ACS Nano 4:2035–42
    [Google Scholar]
  140. 140.
    Wilson MA, Pohorille A, Pratt LR. 1988. Surface potential of the water liquid–vapor interface. J. Chem. Phys. 88:3281–85
    [Google Scholar]
  141. 141.
    Zhou K, Xu Z. 2020. Ion permeability and selectivity in composite nanochannels: engineering through the end effects. J. Phys. Chem. C 124:4890–98
    [Google Scholar]
  142. 142.
    Alvarez F, Arbe A, Colmenero J. 2021. Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. J. Chem. Phys. 155:244509
    [Google Scholar]
  143. 143.
    Yang LJ, Liu CW, Shao Q, Zhang J, Gao YQ. 2015. From thermodynamics to kinetics: enhanced sampling of rare events. Acc. Chem. Res. 48:947–55
    [Google Scholar]
  144. 144.
    Jinnouchi R, Miwa K, Karsai F, Kresse G, Asahi R. 2020. On-the-fly active learning of interatomic potentials for large-scale atomistic simulations. J. Phys. Chem. Lett. 11:6946–55
    [Google Scholar]
  145. 145.
    Kang P-L, Shang C, Liu Z-P. 2020. Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration. Acc. Chem. Res. 53:2119–29
    [Google Scholar]
  146. 146.
    Keith JA, Vassilev-Galindo V, Cheng BQ, Chmiela S, Gastegger M et al. 2021. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121:9816–72
    [Google Scholar]
  147. 147.
    Smith JS, Isayev O, Roitberg AE. 2017. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8:3192–203
    [Google Scholar]
  148. 148.
    Noé F, Tkatchenko A, Müller K-R, Clementi C. 2020. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71:361–90
    [Google Scholar]
  149. 149.
    Lee Y-R, Yu K, Ravi S, Ahn W-S 2018. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces 10:23918–27
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-083022-030802
Loading
/content/journals/10.1146/annurev-physchem-083022-030802
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error