Skip to main content
Log in

Scattering and Uniform in Time Error Estimates for Splitting Method in NLS

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation with a defocusing nonlinearity which is mass-(super)critical and energy-subcritical. We prove uniform in time error estimates for the Lie–Trotter time splitting discretization. This uniformity in time is obtained thanks to a vectorfield which provides time decay estimates for the exact and numerical solutions. This vectorfield is classical in scattering theory and requires several technical modifications compared to previous error estimates for splitting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Besse, B. Bidégaray, and S. Descombes. Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 40(1):26–40, 2002.

    Article  MathSciNet  Google Scholar 

  2. R. Carles. Nonlinear Schrödinger equations with repulsive harmonic potential and applications. SIAM J. Math. Anal., 35(4):823–843, 2003.

    Article  MathSciNet  Google Scholar 

  3. R. Carles. Rotating points for the conformal NLS scattering operator. Dyn. Partial Differ. Equ., 6(1):35–51, 2009.

    Article  MathSciNet  Google Scholar 

  4. T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 2003.

  5. T. Cazenave and F. Weissler. Rapidly decaying solutions of the nonlinear Schrödinger equation. Comm. Math. Phys., 147:75–100, 1992.

    Article  MathSciNet  Google Scholar 

  6. W. Choi and Y. Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in \(H^1\). Discrete Contin. Dyn. Syst., 41(8):3837–3867, 2021.

    Article  MathSciNet  Google Scholar 

  7. J. Dereziński and C. Gérard. Scattering theory of quantum and classical N-particle systems. Texts and Monographs in Physics, Springer Verlag, Berlin Heidelberg, 1997.

  8. E. Faou and B. Grébert. Hamiltonian interpolation of splitting approximations for nonlinear PDEs. Found. Comput. Math., 11(4):381–415, 2011.

    Article  MathSciNet  Google Scholar 

  9. E. Faou, R. Horsin, and F. Rousset. On numerical Landau damping for splitting methods applied to the Vlasov-HMF model. Found. Comput. Math., 18(1):97–134, 2018.

    Article  MathSciNet  Google Scholar 

  10. J. Ginibre. An introduction to nonlinear Schrödinger equations. In R. Agemi, Y. Giga, and T. Ozawa, editors, Nonlinear waves (Sapporo, 1995), GAKUTO International Series, Math. Sciences and Appl., pages 85–133. Gakkōtosho, Tokyo, 1997.

  11. J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations. I The Cauchy problem, general case. J. Funct. Anal., 32:1–32, 1979.

    Article  Google Scholar 

  12. J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations. II Scattering theory, general case. J. Funct. Anal., 32:33–71, 1979.

    Article  Google Scholar 

  13. J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z., 170(2):109–136, 1980.

    Article  MathSciNet  Google Scholar 

  14. N. Hayashi and Y. Tsutsumi. Remarks on the scattering problem for nonlinear Schrödinger equations. In Differential equations and mathematical physics (Birmingham, Ala., 1986), volume 1285 of Lectures Notes in Math., pages 162–168. Springer, Berlin, 1987.

  15. N. Hayashi and Y. Tsutsumi. Scattering theory for Hartree type equations. Ann. Inst. H. Poincaré Phys. Théor., 46(2):187–213, 1987.

    MathSciNet  Google Scholar 

  16. L. I. Ignat. A splitting method for the nonlinear Schrödinger equation. J. Differ. Equations, 250(7):3022–3046, 2011.

    Article  Google Scholar 

  17. L. I. Ignat and E. Zuazua. Dispersive properties of numerical schemes for nonlinear Schrödinger equations. In Foundations of computational mathematics, Santander 2005. Selected papers based on the presentations at the international conference of the Foundations of Computational Mathematics (FoCM), Santander, Spain, June 30 – July 9, 2005., pages 181–207. Cambridge: Cambridge University Press, 2006.

  18. L. I. Ignat and E. Zuazua. Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal., 47(2):1366–1390, 2009.

    Article  MathSciNet  Google Scholar 

  19. C. Josserand and Y. Pomeau. Nonlinear aspects of the theory of Bose-Einstein condensates. Nonlinearity, 14(5):R25–R62, 2001.

    Article  MathSciNet  Google Scholar 

  20. R. Killip, T. Oh, O. Pocovnicu, and M. Vişan. Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on \({\mathbb{R}}^3\). Arch. Ration. Mech. Anal., 225(1):469–548, 2017.

    Article  MathSciNet  Google Scholar 

  21. C. Lubich. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp., 77(264):2141–2153, 2008.

    Article  MathSciNet  Google Scholar 

  22. K. Nakanishi and T. Ozawa. Remarks on scattering for nonlinear Schrödinger equations. NoDEA Nonlinear Differential Equations Appl., 9(1):45–68, 2002.

    Article  MathSciNet  Google Scholar 

  23. A. Ostermann, F. Rousset, and K. Schratz. Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math., 21(3):725–765, 2021.

    Article  MathSciNet  Google Scholar 

  24. A. Stefanov and P. G. Kevrekidis. Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations. Nonlinearity, 18(4):1841–1857, 2005.

    Article  MathSciNet  Google Scholar 

  25. E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

  26. T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Su.

Additional information

Communicated by Christian Lubich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RC was supported by Rennes Métropole through its AIS program and by Centre Henri Lebesgue, program ANR-11-LABX-0020-0.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carles, R., Su, C. Scattering and Uniform in Time Error Estimates for Splitting Method in NLS. Found Comput Math 24, 683–722 (2024). https://doi.org/10.1007/s10208-022-09600-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09600-9

Keywords

Mathematics Subject Classification

Navigation