Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma?

Abstract

Head and neck squamous cell carcinomas (HNSCCs) are introduced as the sixth most common cancer in the world. Detection of predictive biomarkers improve early diagnosis and prognosis. Recent cancer researches provide a new avenue for organoids, known as “mini-organs” in a dish, such as patient-derived organoids (PDOs), for cancer modeling. HNSCC burden, heterogeneity, mutations, and organoid give opportunities for the evaluation of drug sensitivity/resistance response according to the unique genetic profile signature. The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) nucleases, as an efficient genome engineering technology, can be used for genetic manipulation in three-dimensional (3D) organoids for cancer modeling by targeting oncogenes/tumor suppressor genes. Moreover, single-cell analysis of circulating tumor cells (CTCs) improved understanding of molecular angiogenesis, distance metastasis, and drug screening without the need for tissue biopsy. Organoids allow us to investigate the biopathogenesis of cancer, tumor cell behavior, and drug screening in a living biobank according to the specific genetic profile of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Benefits and applications of patient-derived organoids (PDOs).
Fig. 2: Genetic manipulation by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR/Cas9) based on double strand breaks (DSB).
Fig. 3: Application of circulating tumor cells (CTCs) in cancer diagnosis and therapy.

Similar content being viewed by others

References

  1. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  2. Tuna M, Amos CI, Mills GB. Genome-wide analysis of head and neck squamous cell carcinomas reveals HPV, TP53, smoking and alcohol-related allele-based acquired uniparental disomy genomic alterations. Neoplasia. 2019;21:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med. 2020;22:e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Chen X, Tian Y, Zhu G, Qin Y, Chen X, et al. Six-gene signature for predicting survival in patients with head and neck squamous cell carcinoma. Aging. 2020;12:767–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee TW, Lai A, Harms JK. Patient-derived xenograft and organoid models for precision medicine targeting of the tumour microenvironment in head and neck cancer. Cancers. 2020;12:3743.

  6. Li Y, Tang P, Cai S, Peng J, Hua G. Organoid based personalized medicine: from bench to bedside. Cell Regen. 2020;9:21

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao H, Jiang E, Shang Z. 3D co-culture of cancer-associated fibroblast with oral cancer organoids. J Dent Res. 2021;100:201–8.

    Article  CAS  PubMed  Google Scholar 

  9. Driehuis E, Kretzschmar K. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protocols. 2020;5:3380–409.

  10. Karakasheva TA, Kijima T, Shimonosono M, Maekawa H, Sahu V, Gabre JT, et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Curr Protoc Stem Cell Biol. 2020;53:e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–1988.e1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Witzleben A, Wang C, Laban S, Savelyeva N, Ottensmeier CH. HNSCC: tumour antigens and their targeting by immunotherapy. Cells. 2020;9:2103.

  13. Almangush A, Leivo I, Mäkitie AA. Overall assessment of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma: time to take notice. Acta Otolaryngol. 2020;140:246–8.

    Article  PubMed  Google Scholar 

  14. Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40:6009–15.

    Article  CAS  PubMed  Google Scholar 

  15. Chandrashekar P, Ahmadinejad N, Wang J, Sekulic A, Egan JB, Asmann YW, et al. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics. 2020;36:1712–7.

    Article  CAS  PubMed  Google Scholar 

  16. Xia X, Li F, He J, Aji R, Gao D. Organoid technology in cancer precision medicine. Cancer Lett. 2019;457:20–27.

    Article  CAS  PubMed  Google Scholar 

  17. Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol. 2020;41:652–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Facompre ND, Rajagopalan P, Sahu V, Pearson AT, Montone KT, James CD, et al. Identifying predictors of HPV-related head and neck squamous cell carcinoma progression and survival through patient-derived models. Int J Cancer. 2020;147:3236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kretzschmar K. Cancer research using organoid technology. J Mol Med. 2021;99:501–15.

    Article  PubMed  Google Scholar 

  20. Ishikawa T, Ogawa T, Nakanome A, Yamauchi Y, Usubuchi H, Shiihara M, et al. Whole exome sequencing and establishment of an organoid culture of the carcinoma showing thymus-like differentiation (CASTLE) of the parotid gland. Virchows Arch. 1149–59;478:2021.

  21. Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, Zhao M, et al. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol. 2018;87:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 2019;7:73–91.

    Article  PubMed  Google Scholar 

  23. Méry B, Rancoule C, Guy JB, Espenel S, Wozny AS, Battiston-Montagne P, et al. Preclinical models in HNSCC: a comprehensive review. Oral Oncol. 2017;65:51–56.

    Article  PubMed  Google Scholar 

  24. Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Disco. 2019;9:852–71.

    Article  CAS  Google Scholar 

  25. Driehuis E. Organoids as a tool for fundamental and translational oncology research: Can organoids guide clinical decision making? Doctoral dissertation, Utrecht University; 2019. https://dspace.library.uu.nl/bitstream/handle/1874/383686/2019_edriehuis1.pdf?sequence=1&isAllowed=y.

  26. Engelmann L, Thierauf J, Koerich Laureano N, Stark HJ, Prigge ES, Horn D, et al. Organotypic co-cultures as a novel 3D model for head and neck squamous cell carcinoma. Cancers. 2020;12:2330.

  27. Peria M, Donnadieu J, Racz C, Ikoli JF, Galmiche A, Chauffert B, et al. Evaluation of individual sensitivity of head and neck squamous cell carcinoma to cetuximab by short-term culture of tumor slices. Head Neck. 2016;38:E911–915.

    Article  PubMed  Google Scholar 

  28. Demers I, Donkers J. Ex vivo culture models to indicate therapy response in head and neck squamous cell carcinoma. Cells. 2020;9:2527.

  29. Shimonosono M, Tanaka K, Flashner S, Takada S, Matsuura N, Tomita Y, et al. Alcohol metabolism enriches squamous cell carcinoma cancer stem cells that survive oxidative stress via autophagy. Biomolecules. 2021;11:1479.

  30. Putker M, Millen R, Overmeer R, Driehuis E, Zandvliet M, Clevers H, et al. Medium-throughput drug- and radiotherapy screening assay using patient-derived organoids. J Vis Exp. 2021;170.

  31. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109:952–63.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Derouet MF, Allen J, Wilson GW, Ng C, Radulovich N, Kalimuthu S, et al. Towards personalized induction therapy for esophageal adenocarcinoma: organoids derived from endoscopic biopsy recapitulate the pre-treatment tumor. Sci Rep. 2020;10:14514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peirsman A, Blondeel E. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nat Methods. 2021;18:1294–303.

  34. Miserocchi G, Spadazzi C, Calpona S, De Rosa F, Usai A, De Vita A, et al. Precision medicine in head and neck cancers: genomic and preclinical approaches. J Personalized Med. 2022;12:854.

    Article  Google Scholar 

  35. Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision medicine gains momentum: novel 3D models and stem cell-based approaches in head and neck cancer. Front Cell Dev Biol. 2021;9:666515.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int. 2019;19:16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miserocchi G, Cocchi C, De Vita A, Liverani C, Spadazzi C, Calpona S, et al. Three-dimensional collagen-based scaffold model to study the microenvironment and drug-resistance mechanisms of oropharyngeal squamous cell carcinomas. Cancer Biol Med. 2021;18:502–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kennedy R, Kuvshinov D, Sdrolia A, Kuvshinova E, Hilton K, Crank S, et al. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci Rep. 2019;9:6327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Avendano A, Cortes-Medina M, Song JW. Application of 3-D microfluidic models for studying mass transport properties of the tumor interstitial matrix. Front Bioeng Biotechnol. 2019;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vu TV, Das S, Nguyen CC, Kim J, Kim JY. Single-strand annealing: molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing. Biotechnol J. 2021;17:e2100413.

  41. Zeballos CM, Gaj T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol. 2021;39:692–705.

    Article  Google Scholar 

  42. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater. 2022;21:143–159.

  44. Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in three-dimensional stem cell cultures to model disease. Front Bioeng Biotechnol. 2020;8:692.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Latour YL, Yoon R, Thomas SE, Grant C, Li C, Sena-Esteves M, et al. Human GLB1 knockout cerebral organoids: a model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol Genet Metab Rep. 2019;21:100513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA. 2019;116:15635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dekkers JF, Whittle JR, Vaillant F, Chen HR, Dawson C, Liu K, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst. 2020;112:540–4.

    Article  PubMed  Google Scholar 

  48. Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 2020;21:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lõhmussaar K, Kopper O, Korving J, Begthel H, Vreuls CPH, van Es JH, et al. Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids. Nat Commun. 2020;11:2660.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barbáchano A, Fernández-Barral A. Organoids and colorectal cancer. Cancers. 2021;13:2657.

  51. de Witte CJ, Espejo Valle-Inclan J, Hami N, Lõhmussaar K, Kopper O, Vreuls CPH, et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 2020;31:107762.

    Article  PubMed  Google Scholar 

  52. Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int. 2019;19:341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farshbaf A, Zare R, Mohajertehran F, Mohtasham N. New diagnostic molecular markers and biomarkers in odontogenic tumors. Mol Biol Rep. 2021;48:3617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farshbaf A, Mohtasham N, Zare R, Mohajertehran F, Rezaee SA. Potential therapeutic approaches of microRNAs for COVID-19: challenges and opportunities. J Oral Biol Craniofac Res. 2021;11:132–7.

    Article  PubMed  Google Scholar 

  55. Zhang Q, Rong Y, Yi K, Huang L, Chen M, Wang F. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications. Theranostics. 2020;10:12060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer. 2018;1869:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers. 2018;11:19.

  58. Perumal V, Corica T, Dharmarajan AM, Sun Z, Dhaliwal SS, Dass CR, et al. Circulating tumour cells (CTC), head and neck cancer and radiotherapy; future perspectives. Cancers. 11 2019;11:367.

  59. Tada H, Takahashi H, Kawabata-Iwakawa R, Nagata Y, Uchida M, Shino M, et al. Molecular phenotypes of circulating tumor cells and efficacy of nivolumab treatment in patients with head and neck squamous cell carcinoma. Sci Rep. 2020;10:21573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheon DJ, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119.

    Article  CAS  PubMed  Google Scholar 

  61. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–54.

    Article  CAS  PubMed  Google Scholar 

  62. Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong WP, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res. 2022;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol. 2020;15:211–34.

    Article  CAS  PubMed  Google Scholar 

  64. Sufi J, Qin X. Multiplexed single-cell analysis of organoid signaling networks. Nat Protoc. 2021;16:4897–918.

  65. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pyle MP, Hoa M. Applications of single-cell sequencing for the field of otolaryngology: a contemporary review. Laryngoscope Investig Otolaryngol. 2020;5:404–31.

  67. Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 2017;114:E2357–e2364.

  68. Kawasaki K, Fujii M, Sugimoto S, Ishikawa K, Matano M, Ohta Y, et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma. Gastroenterology. 2020;158:638–651.e638.

    Article  CAS  PubMed  Google Scholar 

  69. Schene IF, Joore IP, Oka R. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11:5352.

  70. Nie J, Hashino E. Organoid technologies meet genome engineering. EMBO Rep. 2017;18:367–76.

  71. Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett. 2019;447:48–55.

    Article  CAS  PubMed  Google Scholar 

  72. Munsie M, Hyun I, Sugarman J. Ethical issues in human organoid and gastruloid research. Development 2017;144:942–5.

    Article  CAS  PubMed  Google Scholar 

  73. Nurk S, Koren S. The complete sequence of a human genome. Science. 2022;376:44–53.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study concepts: NM; Study design: NM, AF; Investigation and searches: AF, ML, RZ; Manuscript preparation: AF, ML; Manuscript editing: RZ; Supervision: NM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nooshin Mohtasham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshbaf, A., Lotfi, M., Zare, R. et al. The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma?. Pharmacogenomics J 23, 37–44 (2023). https://doi.org/10.1038/s41397-022-00296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-022-00296-2

This article is cited by

Search

Quick links