1932

Abstract

Nerves not only regulate the homeostasis and energetic metabolism of normal epithelial cells but also are critical for cancer, as cancer recapitulates the biology of neural regulation of epithelial tissues. Cancer cells rarely develop in denervated organs, and denervation affects tumorigenesis, in vivo and in humans. Axonogenesis occurs to supply the new malignant epithelial growth with nerves. Neurogenesis happens later, first in ganglia around organs or the spinal column and subsequently through recruitment of neuroblasts from the central nervous system. The hallmark of this stage is regulation of homeostasis and energetic metabolism. Perineural invasion is the most efficient interaction between cancer cells and nerves. The hallmark of this stage is increased proliferation and decreased apoptosis. Finally, carcinoma cells transdifferentiate into a neuronal profile in search of neural independence. The latter is the last stage in neuroepithelial interactions. Treatments for cancer must address the biology of neural regulation of cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-023248
2023-01-24
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-023248.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-023248&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ayala GE, Wheeler TM, Shine HD, Schmelz M, Frolov A et al. 2001. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:213–23
    [Google Scholar]
  2. 2.
    Ernst P. 1905. Uber das Wachstum und die Verbreitung Bostariger eshwulste insbesondere des Krebes in den Lymphbahnen der Nerven. Beitr. Pathol. Anat. 7:29–51
    [Google Scholar]
  3. 3.
    Larson DL, Rodin AE, Roberts DK, O'Steen WK, Rapperport AS, Lewis SR. 1966. Perineural lymphatics: myth or fact. Am. J. Surg. 112:488–92
    [Google Scholar]
  4. 4.
    Vogel G. 1999. Harnessing the power of stem cells. Science 283:1432–34
    [Google Scholar]
  5. 5.
    Emmerson E, May AJ, Nathan S, Cruz-Pacheco N, Lizama CO et al. 2017. SOX2 regulates acinar cell development in the salivary gland. eLife 6:e26620
    [Google Scholar]
  6. 6.
    Sudiwala S, Knox SM. 2019. The emerging role of cranial nerves in shaping craniofacial development. Genesis 57:e23282
    [Google Scholar]
  7. 7.
    Knosp WM, Knox SM, Hoffman MP. 2012. Salivary gland organogenesis. Wiley Interdiscip. Rev. Dev. Biol. 1:69–82
    [Google Scholar]
  8. 8.
    Andrew DJ. 1998. Regulation and formation of the Drosophila salivary glands. Ann. N. Y. Acad. Sci. 842:55–69
    [Google Scholar]
  9. 9.
    Ayala GE, Dai H, Powell M, Li R, Ding Y et al. 2008. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14:7593–603
    [Google Scholar]
  10. 10.
    Vining KH, Lombaert IMA, Patel VN, Kibbey SE, Pradhan-Bhatt S et al. 2019. Neurturin-containing laminin matrices support innervated branching epithelium from adult epithelial salispheres. Biomaterials 216:119245
    [Google Scholar]
  11. 11.
    Zhang SE, Su YX, Zheng GS, Liang YJ, Liao GQ. 2014. Reinnervated nerves contribute to the secretion function and regeneration of denervated submandibular glands in rabbits. Eur. J. Oral. Sci. 122:372–81
    [Google Scholar]
  12. 12.
    Kyriacou K, Garrett JR, Gjorstrup P. 1988. Structural and functional studies of the effects of sympathetic nerve stimulation on rabbit submandibular salivary glands. Arch. Oral. Biol. 33:271–80
    [Google Scholar]
  13. 13.
    Kyriacou K, Garrett JR. 1988. Morphological changes in the rabbit submandibular gland after parasympathetic or sympathetic denervation. Arch. Oral Biol. 33:281–90
    [Google Scholar]
  14. 14.
    Boshell JL, Pennington C. 1980. Histological observations on the effects of isoproterenol on regenerating submandibular glands of the rat. Cell Tissue Res 213:411–16
    [Google Scholar]
  15. 15.
    Norberg LE, Lundquist PG. 1988. An ultrastructural study of salivary gland radiosensitivity after alpha-adrenergic stimulation. Auris Nasus Larynx 15:1–17
    [Google Scholar]
  16. 16.
    Ferreira JNA, Zheng C, Lombaert IMA, Goldsmith CM, Cotrim AP et al. 2018. Neurturin gene therapy protects parasympathetic function to prevent irradiation-induced murine salivary gland hypofunction. Mol. Ther. Methods Clin. Dev. 9:172–80
    [Google Scholar]
  17. 17.
    Bitoh Y, Shimotake T, Sasaki Y, Iwai N. 2002. Development of the pelvic floor muscles of murine embryos with anorectal malformations. J. Pediatr. Surg. 37:224–27
    [Google Scholar]
  18. 18.
    Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB et al. 2014. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6:250ra115
    [Google Scholar]
  19. 19.
    Nishi R. 2003. Target-mediated control of neural differentiation. Prog. Neurobiol. 69:213–27
    [Google Scholar]
  20. 20.
    Stewart RR, Spergel D, Macagno ER. 1986. Segmental differentiation in the leech nervous system: the genesis of cell number in the segmental ganglia of Haemopis marmorata. J. Comp. Neurol. 253:253–59
    [Google Scholar]
  21. 21.
    Baptista CA, Gershon TR, Macagno ER. 1990. Peripheral organs control central neurogenesis in the leech. Nature 346:855–58
    [Google Scholar]
  22. 22.
    Coarfa C, Florentin D, Putluri N, Ding Y, Au J et al. 2018. Influence of the neural microenvironment on prostate cancer. Prostate 78:128–39
    [Google Scholar]
  23. 23.
    Wang JM, McKenna KE, McVary KT, Lee C. 1991. Requirement of innervation for maintenance of structural and functional integrity in the rat prostate. Biol. Reprod. 44:1171–76
    [Google Scholar]
  24. 24.
    Doggweiler R, Zermann DH, Ishigooka M, Schmidt RA. 1998. Botox-induced prostatic involution. Prostate 37:44–50
    [Google Scholar]
  25. 25.
    Goransson LG, Mellgren SI, Lindal S, Omdal R. 2004. The effect of age and gender on epidermal nerve fiber density. Neurology 62:774–77
    [Google Scholar]
  26. 26.
    Cho NR, Yu Y, Oh CK, Ko DS, Myung K et al. 2021. Neuropeptide Y: a potential theranostic biomarker for diabetic peripheral neuropathy in patients with type-2 diabetes. Ther. Adv. Chronic Dis. https://doi.org/10.1177/20406223211041936
    [Crossref] [Google Scholar]
  27. 27.
    Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. 2009. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev. Mol. Med. 11:e2
    [Google Scholar]
  28. 28.
    Tokushige N, Markham R, Russell P, Fraser IS. 2006. Nerve fibres in peritoneal endometriosis. Hum. Reprod. 21:3001–7
    [Google Scholar]
  29. 29.
    Stopczynski RE, Normolle DP, Hartman DJ, Ying H, DeBerry JJ et al. 2014. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res 74:1718–27
    [Google Scholar]
  30. 30.
    Schmitd LB, Perez-Pacheco C, D'Silva NJ 2021. Nerve density in cancer: Less is better. FASEB Bioadv 3:773–86
    [Google Scholar]
  31. 31.
    Zhao Q, Yang Y, Liang X, Du G, Liu L et al. 2014. The clinicopathological significance of neurogenesis in breast cancer. BMC Cancer 14:484
    [Google Scholar]
  32. 32.
    Han H, Yang C, Zhang Y, Han C, Zhang G. 2021. Vascular endothelial growth factor mediates the sprouted axonogenesis of breast cancer in rat. Am. J. Pathol. 191:515–26
    [Google Scholar]
  33. 33.
    Rademakers G, Vaes N, Schonkeren S, Koch A, Sharkey KA, Melotte V. 2017. The role of enteric neurons in the development and progression of colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 1868:420–34
    [Google Scholar]
  34. 34.
    Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO et al. 2020. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578:449–54
    [Google Scholar]
  35. 35.
    Griffin N, Rowe CW, Gao F, Jobling P, Wills V et al. 2020. Clinicopathological significance of nerves in esophageal cancer. Am. J. Pathol. 190:1921–30
    [Google Scholar]
  36. 36.
    Zhang L, Tao L, Guo L, Zhan J, Yuan C et al. 2018. G-CSF associates with neurogenesis and predicts prognosis and sensitivity to chemotherapy in pancreatic ductal adenocarcinoma. Cancer Manag. Res. 10:2767–75
    [Google Scholar]
  37. 37.
    Olar A, He D, Florentin D, Ding Y, Ayala G. 2014. Biologic correlates and significance of axonogenesis in prostate cancer. Hum. Pathol. 45:1358–64
    [Google Scholar]
  38. 38.
    Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G et al. 2011. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117:4834–45
    [Google Scholar]
  39. 39.
    Zhang L, Guo L, Tao M, Fu W, Xiu D. 2016. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma. Chin. J. Cancer Res. 28:180–86
    [Google Scholar]
  40. 40.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH et al. 2006. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–73
    [Google Scholar]
  41. 41.
    de Wit J, Verhaagen J. 2003. Role of semaphorins in the adult nervous system. Prog. Neurobiol. 71:249–67
    [Google Scholar]
  42. 42.
    Ding Y, He D, Florentin D, Frolov A, Hilsenbeck S et al. 2013. Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer. Clin. Cancer Res. 19:6101–11
    [Google Scholar]
  43. 43.
    Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y et al. 2018. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 34:863–67
    [Google Scholar]
  44. 44.
    Liu M, Jia Z, Xiao X, Zhang Z, Li P et al. 2018. Carboxylated graphene oxide promoted axonal guidance growth by activating Netrin-1/deleted in colorectal cancer signaling in rat primary cultured cortical neurons. J. Biomed. Mater. Res. A 106:1500–10
    [Google Scholar]
  45. 45.
    Silverman DA, Martinez VK, Dougherty PM, Myers JN, Calin GA, Amit M. 2021. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res 81:1431–40
    [Google Scholar]
  46. 46.
    Grelet S, Frereux C, Obellianne C, Noguchi K, Howley BV et al. 2022. TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis. Life Sci. Alliance 5:2e202101261
    [Google Scholar]
  47. 47.
    Chedotal A. 2007. Chemotropic axon guidance molecules in tumorigenesis. Prog. Exp. Tumor. Res. 39:78–90
    [Google Scholar]
  48. 48.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34
    [Google Scholar]
  49. 49.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–16
    [Google Scholar]
  50. 50.
    Shen Q, Goderie SK, Jin L, Karanth N, Sun Y et al. 2004. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–40
    [Google Scholar]
  51. 51.
    Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS. 2005. Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23:923–30
    [Google Scholar]
  52. 52.
    Geuna S, Borrione P, Fornaro M, Giacobini-Robecchi MG. 2000. Neurogenesis and stem cells in adult mammalian dorsal root ganglia. Anat. Rec. 261:139–40
    [Google Scholar]
  53. 53.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. 2000. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–82
    [Google Scholar]
  54. 54.
    Semerci F, Maletic-Savatic M. 2016. Transgenic mouse models for studying adult neurogenesis. Front. Biol. 11:151–67
    [Google Scholar]
  55. 55.
    Semerci F, Choi WT, Bajic A, Thakkar A, Encinas JM et al. 2017. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance. eLife 6:e24660
    [Google Scholar]
  56. 56.
    Tsarovina K, Schellenberger J, Schneider C, Rohrer H. 2008. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves Notch signaling. Mol. Cell. Neurosci. 37:20–31
    [Google Scholar]
  57. 57.
    Muratori L, Ronchi G, Raimondo S, Geuna S, Giacobini-Robecchi MG, Fornaro M. 2015. Generation of new neurons in dorsal root Ganglia in adult rats after peripheral nerve crush injury. Neural. Plast. 2015 860546
    [Google Scholar]
  58. 58.
    Mauffrey P, Tchitchek N, Barroca V, Bemelmans AP, Firlej V et al. 2019. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–78
    [Google Scholar]
  59. 59.
    Barbonetti A, D'Andrea S, Martorella A, Felzani G, Francavilla S, Francavilla F 2018. Risk of prostate cancer in men with spinal cord injury: a systematic review and meta-analysis. Asian J. Androl. 20:555–60
    [Google Scholar]
  60. 60.
    Neumeister MW. 2010. Botulinum toxin type A in the treatment of Raynaud's phenomenon. J. Hand. Surg. Am. 35:2085–92
    [Google Scholar]
  61. 61.
    Iorio ML, Masden DL, Higgins JP. 2012. Botulinum toxin A treatment of Raynaud's phenomenon: a review. Semin. Arthritis Rheum. 41:599–603
    [Google Scholar]
  62. 62.
    Merritt WH. 2015. Role and rationale for extended periarterial sympathectomy in the management of severe Raynaud syndrome: techniques and results. Hand. Clin. 31:101–20
    [Google Scholar]
  63. 63.
    Kappos EA, Engels PE, Tremp M, Sieber PK, von Felten S et al. 2018. Denervation leads to volume regression in breast cancer. J. Plast. Reconstr. Aesthet. Surg. 71:833–39
    [Google Scholar]
  64. 64.
    Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC et al. 2016. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. PNAS 113:3078–83
    [Google Scholar]
  65. 65.
    Chen D, Ayala GE. 2018. Innervating prostate cancer. N. Engl. J. Med. 378:675–77
    [Google Scholar]
  66. 66.
    Ding Y, Lee M, Gao Y, Bu P, Coarfa C et al. 2021. Neuropeptide Y nerve paracrine regulation of prostate cancer oncogenesis and therapy resistance. Prostate 81:58–71
    [Google Scholar]
  67. 67.
    Dietrich P, Wormser L, Fritz V, Seitz T, De Maria M et al. 2020. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J. Clin. Investig. 130:2509–26
    [Google Scholar]
  68. 68.
    Wang X, Chen X, Zhou H, Qian Y, Han N et al. 2019. The long noncoding RNA, LINC01555, promotes invasion and metastasis of colorectal cancer by activating the neuropeptide, neuromedin U. Med. Sci. Monit. 25:4014–24
    [Google Scholar]
  69. 69.
    Kasprzak A, Adamek A. 2020. The neuropeptide system and colorectal cancer liver metastases: mechanisms and management. Int. J. Mol. Sci. 21:103494
    [Google Scholar]
  70. 70.
    Misawa K, Imai A, Mochizuki D, Misawa Y, Endo S et al. 2017. Genes encoding neuropeptide receptors are epigenetic markers in patients with head and neck cancer: a site-specific analysis. Oncotarget 8:76318–28
    [Google Scholar]
  71. 71.
    Waldmann J, Fendrich V, Reichert M, Hecker A, Bartsch DK et al. 2018. Expression of neuropeptide Y and its receptors Y1 and Y2 in pancreatic intraepithelial neoplasia and invasive pancreatic cancer in a transgenic mouse model and human samples of pancreatic cancer. J. Surg. Res. 223:230–36
    [Google Scholar]
  72. 72.
    Gutierrez S, Boada MD. 2018. Neuropeptide-induced modulation of carcinogenesis in a metastatic breast cancer cell line (MDA-MB-231LUC+). Cancer Cell Int 18:216
    [Google Scholar]
  73. 73.
    Dawoud MM, Abdelaziz KK, Alhanafy AM, Ali MSE, Elkhouly EAB. 2021. Clinical significance of immunohistochemical expression of neuropeptide Y1 receptor in patients with breast cancer in Egypt. Appl. Immunohistochem. Mol. Morphol. 29:277–86
    [Google Scholar]
  74. 74.
    Li J, Tian Y, Shan D, Gong A, Zeng L et al. 2017. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials 116:106–17
    [Google Scholar]
  75. 75.
    Avvakumova S, Galbiati E, Sironi L, Locarno SA, Gambini L et al. 2016. Theranostic nanocages for imaging and photothermal therapy of prostate cancer cells by active targeting of neuropeptide-Y receptor. Bioconjug. Chem. 27:2911–22
    [Google Scholar]
  76. 76.
    Cardoso ME, Tejeria E, Rey Rios AM, Teran M 2020. Development and characterization of a 99mTc-labeled neuropeptide Y short analog with potential application in breast cancer imaging. Chem. Biol. Drug Des. 95:302–10
    [Google Scholar]
  77. 77.
    Cardoso ME, Tejeria E, Zirbesegger K, Savio E, Teran M, Rey Rios AM 2021. Development and characterization of two novel 68Ga-labelled neuropeptide Y short analogues with potential application in breast cancer imaging. Chem. Biol. Drug Des. 98:182–91
    [Google Scholar]
  78. 78.
    Zhang C, Pan J, Lin KS, Dude I, Lau J et al. 2016. Targeting the neuropeptide Y1 receptor for cancer imaging by positron emission tomography using novel truncated peptides. Mol. Pharm. 13:3657–64
    [Google Scholar]
  79. 79.
    Bohme D, Krieghoff J, Beck-Sickinger AG. 2016. Double methotrexate-modified neuropeptide Y analogues express increased toxicity and overcome drug resistance in breast cancer cells. J. Med. Chem. 59:3409–17
    [Google Scholar]
  80. 80.
    Wang W, Guo X, Dan H 2020. α2A-adrenergic receptor inhibits the progression of cervical cancer through blocking PI3K/AKT/mTOR pathway. Onco. Targets Ther. 13:10535–46
    [Google Scholar]
  81. 81.
    Huang T, Tworoger SS, Hecht JL, Rice MS, Sood AK et al. 2016. Association of ovarian tumor β2-adrenergic receptor status with ovarian cancer risk factors and survival. Cancer Epidemiol. Biomarkers Prev. 25:1587–94
    [Google Scholar]
  82. 82.
    Yazawa T, Kaira K, Shimizu K, Shimizu A, Mori K et al. 2016. Prognostic significance of β2-adrenergic receptor expression in non-small cell lung cancer. Am. J. Transl. Res. 8:5059–70
    [Google Scholar]
  83. 83.
    Ogawa H, Kaira K, Motegi Y, Yokobori T, Takada T et al. 2020. Prognostic significance of β2-adrenergic receptor expression in patients with surgically resected colorectal cancer. Int. J. Clin. Oncol. 25:1137–44
    [Google Scholar]
  84. 84.
    Wang T, Li Y, Lu HL, Meng QW, Cai L, Chen XS. 2015. β-Adrenergic receptors: new target in breast cancer. Asian Pac. J. Cancer Prev. 16:8031–39
    [Google Scholar]
  85. 85.
    Caparica R, Richard F, Brandao M, Awada A, Sotiriou C, de Azambuja E. 2020. Prognostic and predictive impact of beta-2 adrenergic receptor expression in HER2-positive breast cancer. Clin. Breast Cancer 20:262–73.e7
    [Google Scholar]
  86. 86.
    Magnon C, Hall SJ, Lin J, Xue X, Gerber L et al. 2013. Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361
    [Google Scholar]
  87. 87.
    Zhi X, Li B, Li Z, Zhang J, Yu J et al. 2019. Adrenergic modulation of AMPK-dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int. J. Oncol. 54:1625–38
    [Google Scholar]
  88. 88.
    Decker AM, Decker JT, Jung Y, Cackowski FC, Daignault-Newton S et al. 2020. Adrenergic blockade promotes maintenance of dormancy in prostate cancer through upregulation of GAS6. Transl. Oncol. 13:100781
    [Google Scholar]
  89. 89.
    Wilson JM, Lorimer E, Tyburski MD, Williams CL. 2015. β-Adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells. Cancer Biol. Ther. 16:1364–74
    [Google Scholar]
  90. 90.
    Zhou J, Liu Z, Zhang L, Hu X, Wang Z et al. 2020. Activation of β2-adrenergic receptor promotes growth and angiogenesis in breast cancer by down-regulating PPARγ. Cancer Res. Treat. 52:830–47
    [Google Scholar]
  91. 91.
    Am. Assoc. Cancer Res. 2018. An adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Discov 8:138
    [Google Scholar]
  92. 92.
    Hu P, He J, Liu S, Wang M, Pan B, Zhang W. 2016. β2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol. Rep. 36:1757–63
    [Google Scholar]
  93. 93.
    Nagaraja AS, Dorniak PL, Sadaoui NC, Kang Y, Lin T et al. 2016. Sustained adrenergic signaling leads to increased metastasis in ovarian cancer via increased PGE2 synthesis. Oncogene 35:2390–97
    [Google Scholar]
  94. 94.
    Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O et al. 2017. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin. Cancer Res. 23:4651–61
    [Google Scholar]
  95. 95.
    Choy C, Raytis JL, Smith DD, Duenas M, Neman J et al. 2016. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: the potential benefit of perioperative β-blockade. Oncol. Rep. 35:3135–42
    [Google Scholar]
  96. 96.
    Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S et al. 2015. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121:3444–51
    [Google Scholar]
  97. 97.
    Hwa YL, Shi Q, Kumar SK, Lacy MQ, Gertz MA et al. 2017. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. Am. J. Hematol. 92:50–55
    [Google Scholar]
  98. 98.
    Udumyan R, Montgomery S, Duberg AS, Fang F, Valdimarsdottir U et al. 2020. Beta-adrenergic receptor blockers and liver cancer mortality in a national cohort of hepatocellular carcinoma patients. Scand. J. Gastroenterol. 55:597–605
    [Google Scholar]
  99. 99.
    Posielski NM, Richards KA, Liou JI, Borza T, Abel EJ et al. 2021. Beta-adrenergic antagonists and cancer specific survival in patients with advanced prostate cancer: a Veterans Administration cohort study. Urology 155:186–91
    [Google Scholar]
  100. 100.
    Chaudhary KR, Yan SX, Heilbroner SP, Sonett JR, Stoopler MB et al. 2019. Effects of β-adrenergic antagonists on chemoradiation therapy for locally advanced non-small cell lung cancer. J. Clin. Med. 8:575
    [Google Scholar]
  101. 101.
    Harris AM, Warner BW, Wilson JM, Becker A, Rowland RG et al. 2007. Effect of α1-adrenoceptor antagonist exposure on prostate cancer incidence: an observational cohort study. J. Urol. 178:2176–80
    [Google Scholar]
  102. 102.
    Murtola TJ, Tammela TL, Maattanen L, Ala-Opas M, Stenman UH, Auvinen A. 2009. Prostate cancer incidence among finasteride and alpha-blocker users in the Finnish Prostate Cancer Screening Trial. Br. J. Cancer 101:843–48
    [Google Scholar]
  103. 103.
    Buzgan NG, Semenenko OF, Dorosevich AE. 2016.. [ Influence of acetylcholine and adrenergic receptors on development and progression of non-small cell lung cancer. ]. Vopr. Onkol. 62:694–700 In Russian )
    [Google Scholar]
  104. 104.
    Zhou H, Shi B, Jia Y, Qiu G, Yang W et al. 2018. Expression and significance of autonomic nerves and α9 nicotinic acetylcholine receptor in colorectal cancer. Mol. Med. Rep. 17:8423–31
    [Google Scholar]
  105. 105.
    Olar A, He D, Florentin D, Ding Y, Wheeler T, Ayala G. 2014. Biological correlates of prostate cancer perineural invasion diameter. Hum. Pathol. 45:1365–69
    [Google Scholar]
  106. 106.
    Ayala GE, Dai H, Ittmann M, Li R, Powell M et al. 2004. Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64:6082–90
    [Google Scholar]
  107. 107.
    Dai H, Li R, Wheeler T, Diaz de Vivar A, Frolov A et al. 2005. Pim-2 upregulation: biological implications associated with disease progression and perinueral invasion in prostate cancer. Prostate 65:276–86
    [Google Scholar]
  108. 108.
    Ayala GE, Dai H, Tahir SA, Li R, Timme T et al. 2006. Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res 66:5159–64
    [Google Scholar]
  109. 109.
    Dai H, Li R, Wheeler T, Ozen M, Ittmann M et al. 2007. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Hum. Pathol. 38:299–307
    [Google Scholar]
  110. 110.
    He D, Manzoni A, Florentin D, Fisher W, Ding Y et al. 2016. Biologic effect of neurogenesis in pancreatic cancer. Hum. Pathol. 52:182–89
    [Google Scholar]
  111. 111.
    Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G et al. 2011. Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117:214834–45
    [Google Scholar]
  112. 112.
    Li R, Wheeler T, Dai H, Ayala G. 2003. Neural cell adhesion molecule is upregulated in nerves with prostate cancer invasion. Hum. Pathol. 34:457–61
    [Google Scholar]
  113. 113.
    Ayala GE, Dai H, Li R, Ittmann M, Thompson TC et al. 2006. Bystin in perineural invasion of prostate cancer. Prostate 66:266–72
    [Google Scholar]
  114. 114.
    Deborde S, Gusain L, Powers A, Marcadis A, Yu Y et al. 2022. Reprogrammed Schwann cells organize into dynamic tracks that promote pancreatic cancer invasion. Cancer Discov 12:102454–73
    [Google Scholar]
  115. 115.
    Bakst RL, Wong RJ. 2016. Mechanisms of perineural invasion. J. Neurol. Surg. B Skull Base 77:96–106
    [Google Scholar]
  116. 116.
    Cornell RJ, Rowley D, Wheeler T, Ali N, Ayala G 2003. Neuroepithelial interactions in prostate cancer are enhanced in the presence of prostatic stroma. Urology 61:870–75
    [Google Scholar]
  117. 117.
    Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G et al. 2009. Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res. 15:3979–89
    [Google Scholar]
  118. 118.
    Farach A, Ding Y, Lee M, Creighton C, Delk NA et al. 2016. Neuronal trans-differentiation in prostate cancer cells. Prostate 76:1312–25
    [Google Scholar]
  119. 119.
    Benatar M, Blaes F, Johnston I, Wilson K, Vincent A et al. 2001. Presynaptic neuronal antigens expressed by a small cell lung carcinoma cell line. J. Neuroimmunol. 113:153–62
    [Google Scholar]
  120. 120.
    Lapuk AV, Wu C, Wyatt AW, McPherson A, McConeghy BJ et al. 2012. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227:286–97
    [Google Scholar]
  121. 121.
    Nouri M, Caradec J, Lubik AA, Li N, Hollier BG et al. 2017. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget 8:18949–67
    [Google Scholar]
  122. 122.
    Lu R, Fan C, Shangguan W, Liu Y, Li Y et al. 2017. Neurons generated from carcinoma stem cells support cancer progression. Signal. Transduct. Target. Ther. 2:16036
    [Google Scholar]
  123. 123.
    Blandino JK, Viglione MP, Bradley WA, Oie HK, Kim YI. 1995. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J. Membr. Biol. 143:153–63
    [Google Scholar]
  124. 124.
    Johansson S, Rydqvist B, Swerup C, Heilbronn E, Arhem P. 1989. Action potentials of cultured human oat cells: whole-cell measurements with the patch-clamp technique. Acta Physiol. Scand. 135:573–78
    [Google Scholar]
  125. 125.
    Wong GY, Schroeder DR, Carns PE, Wilson JL, Martin DP et al. 2004. Effect of neurolytic celiac plexus block on pain relief, quality of life, and survival in patients with unresectable pancreatic cancer: a randomized controlled trial. JAMA 291:1092–99
    [Google Scholar]
  126. 126.
    Rabben HL, Zhao CM, Hayakawa Y, Wang TC, Chen D 2016. Vagotomy and gastric tumorigenesis. Curr. Neuropharmacol. 14:967–72
    [Google Scholar]
  127. 127.
    Urra FA, Araya-Maturana R. 2020. Putting the brakes on tumorigenesis with snake venom toxins: new molecular insights for cancer drug discovery. Semin. Cancer Biol. 80:195–204
    [Google Scholar]
  128. 128.
    McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. 2020. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 185:129–46
    [Google Scholar]
  129. 129.
    Perez-Peinado C, Defaus S, Andreu D. 2020. Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins 12:4255
    [Google Scholar]
  130. 130.
    Montoya-Gomez A, Montealegre-Sanchez L, Garcia-Perdomo HA, Jimenez-Charris E. 2020. Cervical cancer and potential pharmacological treatment with snake venoms. Mol. Biol. Rep. 47:4709–21
    [Google Scholar]
  131. 131.
    Derakhshani A, Silvestris N, Hajiasgharzadeh K, Mahmoudzadeh S, Fereidouni M et al. 2020. Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: a potential treatment for breast cancer. Int. J. Biol. Macromol. 162:1283–92
    [Google Scholar]
  132. 132.
    Servcik K. 2019. How the body's nerves become accomplices in the spread of cancer. Science Sep. 12. https://doi.org/10.1126/science.aaz4612
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-023248
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-023248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error