1932

Abstract

The biological pump transports organic matter, created by phytoplankton productivity in the well-lit surface ocean, to the ocean's dark interior, where it is consumed by animals and heterotrophic microbes and remineralized back to inorganic forms. This downward transport of organic matter sequesters carbon dioxide from exchange with the atmosphere on timescales of months to millennia, depending on where in the water column the respiration occurs. There are three primary export pathways that link the upper ocean to the interior: the gravitational, migrant, and mixing pumps. These pathways are regulated by vastly different mechanisms, making it challenging to quantify the impacts of the biological pump on the global carbon cycle. In this review, we assess progress toward creating a global accounting of carbon export and sequestration via the biological pump and suggest a path toward achieving this goal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040722-115226
2023-01-16
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-040722-115226.html?itemId=/content/journals/10.1146/annurev-marine-040722-115226&mimeType=html&fmt=ahah

Literature Cited

  1. Aksnes DL, Røstad A, Kaartvedt S, Martinez U, Duarte CM, Irigoien X. 2017. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3:e1602468
    [Google Scholar]
  2. Archibald KM, Siegel DA, Doney SC. 2019. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33:181–99
    [Google Scholar]
  3. Aumont O, Maury O, Lefort S, Bopp L. 2018. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32:1622–43
    [Google Scholar]
  4. Baetge N, Graff JR, Behrenfeld MJ, Carlson CA. 2020. Net community production, dissolved organic carbon accumulation, and vertical export in the Western North Atlantic. Front. Mar. Sci. 7:227
    [Google Scholar]
  5. Baker CA, Martin AP, Yool A, Popova E. 2022. Biological carbon pump sequestration efficiency in the North Atlantic: a leaky or a long-term sink?. Glob. Biogeochem. Cycles 36:e2021GB007286
    [Google Scholar]
  6. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES. 2005. Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J. Geophys. Res. 110:C07001
    [Google Scholar]
  7. Behrenfeld MJ, Boss E, Siegel DA, Shea DM. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19:GB1006
    [Google Scholar]
  8. Behrenfeld MJ, Falkowski PG. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42:1–20
    [Google Scholar]
  9. Behrenfeld MJ, Gaube P, Della Penna A, O'Malley RT, Burt WJ et al. 2019. Global satellite-observed daily vertical migrations of ocean animals. Nature 576:257–61
    [Google Scholar]
  10. Behrenfeld MJ, Hu Y, Hostetler CA, Dall'Olmo G, Rodier SD et al. 2013. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 40:4355–60
    [Google Scholar]
  11. Behrenfeld MJ, O'Malley RT, Boss ES, Westberry TK, Graff JR et al. 2016. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6:323
    [Google Scholar]
  12. Bellacicco M, Pitarch J, Organelli E, Martinez-Vicente V, Volpe G, Marullo S 2020. Improving the retrieval of carbon-based phytoplankton biomass from satellite ocean colour observations. Remote Sens. 12:3640
    [Google Scholar]
  13. Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. 2021. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7:eabd7554
    [Google Scholar]
  14. Bianchi D, Galbraith ED, Carozza DA, Mislan KAS, Stock CA. 2013a. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:545–48
    [Google Scholar]
  15. Bianchi D, Mislan KAS. 2016. Global patterns of diel vertical migration times and velocities from acoustic data. Limnol. Oceanogr. 61:353–64
    [Google Scholar]
  16. Bianchi D, Stock C, Galbraith ED, Sarmiento JL. 2013b. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27:478–91
    [Google Scholar]
  17. Bisson KM, Boss E, Werdell PJ, Ibrahim A, Behrenfeld MJ. 2021a. Particulate backscattering in the global ocean: a comparison of independent assessments. Geophys. Res. Lett. 48:e2020GL090909
    [Google Scholar]
  18. Bisson KM, Boss E, Werdell PJ, Ibrahim A, Frouin R, Behrenfeld MJ. 2021b. Seasonal bias in global ocean color observations. Appl. Opt. 60:6978–88
    [Google Scholar]
  19. Bisson KM, Siegel DA, DeVries T. 2020. Diagnosing mechanisms of ocean carbon export in a satellite-based food web model. Front. Mar. Sci. 7:505
    [Google Scholar]
  20. Bisson KM, Siegel DA, DeVries T, Cael BB, Buesseler KO. 2018. How data set characteristics influence ocean carbon export models. Glob. Biogeochem. Cycles 32:1312–28
    [Google Scholar]
  21. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  22. Boyd PW, Trull TW. 2007. Understanding the export of biogenic particles in oceanic waters: Is there consensus?. Prog. Oceanogr. 72:276–312
    [Google Scholar]
  23. Brewin RJW, Sathyendranath S, Platt T, Bouman H, Ciavatta S et al. 2021. Sensing the ocean biological carbon pump from space: a review of capabilities, concepts, research gaps and future developments. Earth Sci. Rev. 217:103604
    [Google Scholar]
  24. Briggs N, Dall'Olmo G, Claustre H 2020. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367:791–93
    [Google Scholar]
  25. Briggs N, Guðmundsson K, Cetinić I, D'Asaro E, Rehm E et al. 2018. A multi-method autonomous assessment of primary productivity and export efficiency in the springtime North Atlantic. Biogeosciences 15:4515–32
    [Google Scholar]
  26. Broecker WS, Peng T-H. 1974. Gas exchange rates between air and sea. Tellus 26:21–35
    [Google Scholar]
  27. Buesseler KO, Boyd PW, Black EE, Siegel DA. 2020. Metrics that matter for assessing the ocean biological carbon pump. PNAS 117:9679–87
    [Google Scholar]
  28. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW et al. 2007. Revisiting carbon flux through the ocean's twilight zone. Science 316:567–70
    [Google Scholar]
  29. Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J et al. 2010. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$♯! is wrong with present calculations of carbon budgets?. Deep-Sea Res. II 57:1557–71
    [Google Scholar]
  30. Carlson CA, Ducklow HW, Hansell DA, Smith WO Jr. 1998. Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr. 43:375–86
    [Google Scholar]
  31. Carlson CA, Ducklow HW, Michaels AT. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–8
    [Google Scholar]
  32. Carlson CA, Hansell DA, Nelson NB, Siegel DA, Smethie WM et al. 2010. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Res. II 57:1433–45
    [Google Scholar]
  33. Carr ME, Friedrichs MAM, Schmeltz M, Aita MN, Antoine D et al. 2006. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II 53:741–70
    [Google Scholar]
  34. Carroll D, Menemenlis D, Dutkiewicz S, Lauderdale JM, Adkins JF et al. 2022. Attribution of space-time variability in global-ocean dissolved inorganic carbon. Glob. Biogeochem. Cycles 36:e2021GB007162
    [Google Scholar]
  35. Cartapanis O, Galbraith ED, Bianchi D, Jaccard SL. 2018. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14:1819–50
    [Google Scholar]
  36. Carter BR, Feely RA, Lauvset SK, Olsen A, DeVries T, Sonnerup R. 2021. Preformed properties for marine organic matter and carbonate mineral cycling quantification. Glob. Biogeochem. Cycles 35:e2020GB006623
    [Google Scholar]
  37. Chai F, Johnson KS, Claustre H, Xing X, Wang Y et al. 2020. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1:315–26
    [Google Scholar]
  38. Chase AP, Boss E, Cetinić I, Slade W. 2017. Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: toward a global algorithm. J. Geophys. Res. Oceans 122:9725–43
    [Google Scholar]
  39. Churnside J, Wilson J, Tatarskii V. 2001. Airborne lidar for fisheries applications. Opt. Eng. 40:406–14
    [Google Scholar]
  40. Ciotti AM, Bricaud A. 2006. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 4:237–53
    [Google Scholar]
  41. Claustre H, Johnson KS, Takeshita Y. 2020. Observing the global ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 12:23–48
    [Google Scholar]
  42. Claustre H, Legendre L, Boyd PW, Levy M. 2021. The oceans’ biological carbon pumps: framework for a research observational community approach. Front. Mar. Sci. 8:780052
    [Google Scholar]
  43. Collins JR, Edwards BR, Thamatrakoln K, Ossolinski JE, DiTullio GR et al. 2015. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29:1471–94
    [Google Scholar]
  44. Cram JA, Weber T, Leung SW, McDonnell AMP, Liang J-H, Deutsch C. 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32:858–76
    [Google Scholar]
  45. Dall'Olmo G, Dingle J, Polimene L, Brewin RJW, Claustre H. 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9:820–23
    [Google Scholar]
  46. Davison PC, Checkley DM, Koslow JA, Barlow J. 2013. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116:14–30
    [Google Scholar]
  47. DeVries T. 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28:631–47
    [Google Scholar]
  48. DeVries T, Holzer M. 2019. Radiocarbon and helium isotope constraints on deep ocean ventilation and mantle-3He sources. J. Geophys. Res. Oceans 124:3036–57
    [Google Scholar]
  49. DeVries T, Primeau F, Deutsch C. 2012. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39:L13601
    [Google Scholar]
  50. DeVries T, Weber T. 2017. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31:535–55
    [Google Scholar]
  51. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  52. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37
    [Google Scholar]
  53. Drago L, Panaïotis T, Irisson J-O, Babin M, Biard Tet al 2022. Global distribution of zooplankton biomass estimated by in situ imaging and machine learning. Front. Mar. Sci 9:894372
    [Google Scholar]
  54. Ducklow HW, Steinberg DK, Buesseler KO. 2001. Upper ocean carbon export and the biological pump. Oceanography 14:450–58
    [Google Scholar]
  55. Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL. 2005. Empirical and mechanistic models for the particle export ratio. Glob. Biogeochem. Cycles 19:GB4026
    [Google Scholar]
  56. Dunne JP, Sarmiento JL, Gnanadesikan A. 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21:GB4006
    [Google Scholar]
  57. Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP, Omand M. 2021. A visual tour of carbon export by sinking particles. Glob. Biogeochem. Cycles 35:e2021GB006985
    [Google Scholar]
  58. Durkin CA, Cetinić I, Estapa M, Ljubešić Z, Mucko M et al. 2022. Tracing the path of carbon export in the ocean through DNA sequencing of individual sinking particles. ISME J 16:1896–906
    [Google Scholar]
  59. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. 2015. Regional ocean data assimilation. Annu. Rev. Mar. Sci. 7:21–42
    [Google Scholar]
  60. Erickson ZK, Thompson AF. 2018. The seasonality of physically driven export at submesoscales in the northeast Atlantic Ocean. Glob. Biogeochem. Cycles 32:1144–62
    [Google Scholar]
  61. Estapa M, Durkin C, Buesseler KO, Johnson R, Feen M. 2017. Carbon flux from bio-optical profiling floats: calibrating transmissometers for use as optical sediment traps. Deep-Sea Res. I 120:100–11
    [Google Scholar]
  62. Estapa M, Siegel DA, Buesseler KO, Stanley R, Lomas M, Nelson N 2015. Decoupling of net community and export production on submesoscales in the Sargasso Sea. Glob. Biogeochem. Cycles 29:1266–82
    [Google Scholar]
  63. Evers-King H, Martinez-Vicente V, Brewin RJW, Dall'Olmo G, Hickman AE et al. 2017. Validation and intercomparison of ocean color algorithms for estimating particulate organic carbon in the oceans. Front. Mar. Sci. 4:251
    [Google Scholar]
  64. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C. 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8:3071–104
    [Google Scholar]
  65. Gardner WD, Chung SP, Richardson MJ, Walsh ID. 1995. The oceanic mixed-layer pump. Deep-Sea Res. II 42:757–75
    [Google Scholar]
  66. Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C et al. 2014. Reconciliation of the carbon budget in the ocean's twilight zone. Nature 507:480–83
    [Google Scholar]
  67. Graff JR, Westberry TK, Milligan AJ, Brown MB, Dall'Olmo G et al. 2015. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res. I 102:16–25
    [Google Scholar]
  68. Gregg WW. 2008. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst. 69:205–25
    [Google Scholar]
  69. Guidi L, Legendre L, Reygondeau G, Uitz J, Stemmann L, Henson SA. 2015. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29:1044–59
    [Google Scholar]
  70. Haëntjens N, Della Penna A, Briggs N, Karp-Boss L, Gaube P et al. 2020. Detecting mesopelagic organisms using Biogeochemical-Argo floats. Geophys. Res. Lett. 47:e2019GL086088
    [Google Scholar]
  71. Hansell DA, Carlson CA. 2001. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep-Sea Res. II 48:1649–67
    [Google Scholar]
  72. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:4202–11
    [Google Scholar]
  73. Hayes CT, Costa KM, Anderson RF, Calvo E, Chase Z et al. 2021. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35:e2020GB006769
    [Google Scholar]
  74. Hays GC. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503:163–70
    [Google Scholar]
  75. Henson SA, Laufkötter C, Leung S, Giering SL, Palevsky HI, Cavan EL. 2022. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15:248–54
    [Google Scholar]
  76. Henson SA, Sanders R, Madsen E. 2012. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26:GB1028
    [Google Scholar]
  77. Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD 2011. A reduced estimate of the strength of the ocean's biological carbon pump. Geophys. Res. Lett. 38:L04606
    [Google Scholar]
  78. Hernández-León S, Olivar MP, Fernández de Puelles ML, Bode A, Castellón A et al. 2019. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. . Mar. Sci. 6:535
    [Google Scholar]
  79. Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. 2008. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 112:3153–59
    [Google Scholar]
  80. Hostetler CA, Behrenfeld MJ, Hu Y, Hair JW, Schulien JA. 2018. Spaceborne lidar in the study of marine systems. Annu. Rev. Mar. Sci. 10:121–47
    [Google Scholar]
  81. Hu C, Feng L, Lee Z, Franz BA, Bailey SW et al. 2019. Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. J. Geophys. Res. Oceans 124:1524–43
    [Google Scholar]
  82. Huang Q, Primeau F, DeVries T 2021. CYCLOCIM: a 4-D variational assimilation system for the climatological mean seasonal cycle of the ocean circulation. Ocean Model. 159:101762
    [Google Scholar]
  83. Iversen MH, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7:2613–24
    [Google Scholar]
  84. Iversen MH, Ploug H. 2013. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10:4073–85
    [Google Scholar]
  85. Jackson GA, Burd AB. 2015. Simulating aggregate dynamics in ocean biogeochemical models. Prog. Oceanogr. 133:55–65
    [Google Scholar]
  86. Jahnke RA. 1996. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Glob. Biogeochem. Cycles 10:71–88
    [Google Scholar]
  87. Jamet C, Ibrahim A, Ahmad Z, Angelini F, Babin M et al. 2019. Going beyond standard ocean color observations: lidar and polarimetry. Front. Mar. Sci. 6:251
    [Google Scholar]
  88. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H et al. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders. Oceanography 22:3216–25
    [Google Scholar]
  89. Jónasdóttir SH, Visser AW, Richardson K, Heath MR. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. PNAS 112:12122–26
    [Google Scholar]
  90. Jones DC, Ito T, Takano Y, Hsu WC. 2014. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 28:1163–78
    [Google Scholar]
  91. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229
    [Google Scholar]
  92. Keil RG, Neibauer JA, Biladeau C, van der Elst K, Devol AH. 2016. A multiproxy approach to understanding the “enhanced” flux of organic matter through the oxygen-deficient waters of the Arabian Sea. Biogeosciences 13:2077–92
    [Google Scholar]
  93. Klaas C, Archer DE. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16:63–114
    [Google Scholar]
  94. Kostadinov T, Siegel DA, Maritorena S. 2010. Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences 7:3239–57
    [Google Scholar]
  95. Kramer SJ, Siegel DA, Maritorena S, Catlett D. 2022. Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales. Remote Sens. Environ. 270:112879
    [Google Scholar]
  96. Kwon EY, Primeau F, Sarmiento JL. 2009. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2:630–35
    [Google Scholar]
  97. Lacour L, Briggs N, Claustre H, Ardyna M, Dall'Olmo G 2019. The intraseasonal dynamics of the mixed layer pump in the subpolar North Atlantic Ocean: a Biogeochemical-Argo float approach. Glob. Biogeochem. Cycles 33:266–81
    [Google Scholar]
  98. Lacour L, Larouche R, Babin M. 2020. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient. Opt. Express 28:26989–99
    [Google Scholar]
  99. Lam PJ, Doney SC, Bishop JKB. 2011. The dynamic ocean biological pump: insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Glob. Biogeochem. Cycles 25:GB3009
    [Google Scholar]
  100. Lampert W. 1989. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3:21–27
    [Google Scholar]
  101. Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD et al. 2008. Ocean fertilization: a potential means of geoengineering?. Philos. Trans. R. Soc. A 366:3919–45
    [Google Scholar]
  102. Lange PK, Werdell PJ, Erickson ZK, Dall'Olmo G, Brewin RJW et al. 2020. Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts. Opt. Express 28:25682–705
    [Google Scholar]
  103. Laws EA, D'Sa E, Naik P 2011. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9:593–601
    [Google Scholar]
  104. Laws EA, Falkowski PG, Smith WO Jr., Ducklow H, McCarthy JJ. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14:1231–46
    [Google Scholar]
  105. Lee ZP, Carder KL, Arnone RA. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 41:5755–72
    [Google Scholar]
  106. Lévy M, Bopp L, Karleskind P, Resplandy L, Éthé C, Pinsard F. 2013. Physical pathways for carbon transfers between the surface mixed layer and the ocean interior. Glob. Biogeochem. Cycles 27:1001–12
    [Google Scholar]
  107. Longhurst AR, Bedo AW, Harrison WG, Head EJH, Sameoto DD. 1990. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res. A 37:685–94
    [Google Scholar]
  108. Longhurst AR, Williams R. 1992. Carbon flux by seasonal vertical migrant copepods is a small number. J. Plankton Res. 14:1495–509
    [Google Scholar]
  109. Maas AE, Miccoli A, Stamieszkin K, Carlson CA, Steinberg DK. 2021. Allometry and the calculation of zooplankton metabolism in the subarctic Northeast Pacific Ocean. J. Plankton Res. 43:413–27
    [Google Scholar]
  110. Mahadevan A, Archer D. 2000. Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res. Oceans 105:1209–25
    [Google Scholar]
  111. Maritorena S, Siegel DA, Peterson AR. 2002. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 41:2705–14
    [Google Scholar]
  112. Marsay CM, Sanders RJ, Henson SA, Pabortsava K, Achterberg EP, Lampitt RS. 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94
    [Google Scholar]
  113. Martin JH, Knauer GA, Karl DM, Broenkow WW. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. A 34:267–85
    [Google Scholar]
  114. Mazuecos IP, Aristegui J, Vazquez-Dominguez E, Ortega-Retuerta E, Gasol JM, Reche I. 2015. Temperature control of microbial respiration and growth efficiency in the mesopelagic zone of the South Atlantic and Indian Oceans. Deep-Sea Res. I 95:131–38
    [Google Scholar]
  115. McClain CR. 2009. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 1:19–42
    [Google Scholar]
  116. Michaels AF, Silver MW. 1988. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res. A 35:473–90
    [Google Scholar]
  117. Mitchell C, Hu C, Bowler B, Drapeau D, Balch WM. 2017. Estimating particulate inorganic carbon concentrations of the global ocean from ocean color measurements using a reflectance difference approach. J. Geophys. Res. Oceans 122:8707–20
    [Google Scholar]
  118. Moore JK, Fu W, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:1139–43
    [Google Scholar]
  119. Mouw CB, Hardman-Mountford NJ, Alvain S, Bracher A, Brewin RJW et al. 2017. A consumer's guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4:41
    [Google Scholar]
  120. Natl. Acad. Sci. Eng. Med 2021. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration Washington, DC: Natl. Acad. Press
  121. Nicholson DP, Wilson ST, Doney SC, Karl DM. 2015. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42:4032–39
    [Google Scholar]
  122. Nowicki M, DeVries T, Siegel DA. 2022. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump. Glob. Biogeochem. Cycles 36:e2021GB007083
    [Google Scholar]
  123. Ohman MD, Davis RE, Sherman JT, Grindley KR, Whitmore BM et al. 2019. Zooglider: an autonomous vehicle for optical and acoustic sensing of zooplankton. Limnol. Oceanogr. Methods 17:69–86
    [Google Scholar]
  124. Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:222–25
    [Google Scholar]
  125. O'Reilly JE, Werdell PJ 2019. Chlorophyll algorithms for ocean color sensors – OC4, OC5 & OC6. Remote Sens. Environ. 229:32–47
    [Google Scholar]
  126. Passow U, Carlson CA. 2012. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470:249–71
    [Google Scholar]
  127. Passow U, De La, Rocha CL. 2006. Accumulation of mineral ballast on organic aggregates. Glob. Biogeochem. Cycles 20:GB1013
    [Google Scholar]
  128. Picheral M, Catalano C, Brousseau D, Claustre H, Coppola L et al. 2022. The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms. Limnol. Oceanogr. Methods 20:115–29
    [Google Scholar]
  129. Picheral M, Guidi L, Stemmann L, Karl DM, Iddaoud G, Gorsky G. 2010. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8:462–73
    [Google Scholar]
  130. Pinti J, Kiørboe T, Thygesen UH, Visser AW. 2019. Trophic interactions drive the emergence of diel vertical migration patterns: a game-theoretic model of copepod communities. Proc. R. Soc. B 286:20191645
    [Google Scholar]
  131. Primeau F. 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr. 35:545–64
    [Google Scholar]
  132. Resplandy L, Lévy M, McGillicuddy DJ Jr. 2019. Effects of eddy-driven subduction on ocean biological carbon pump. Glob. Biogeochem. Cycles 33:1071–84
    [Google Scholar]
  133. Richardson TL. 2019. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Annu. Rev. Mar. Sci. 11:57–74
    [Google Scholar]
  134. Roesler C, Uitz J, Claustre H, Boss E, Xing X et al. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 15:572–85
    [Google Scholar]
  135. Romera-Castillo C, Álvarez M, Pelegrí JL, Hansell DA, Álvarez-Salgado XA. 2019. Net additions of recalcitrant dissolved organic carbon in the deep Atlantic Ocean. Glob. Biogeochem. Cycles 33:1162–73
    [Google Scholar]
  136. Roshan S, DeVries T. 2018. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8:2036
    [Google Scholar]
  137. Rousseaux CS, Gregg WW. 2015. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 29:1674–88
    [Google Scholar]
  138. Saba GK, Burd AB, Dunne JP, Hernández-León S, Martin AH et al. 2021. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66:1639–64
    [Google Scholar]
  139. Saba VS, Friedrichs MAM, Antoine D, Armstrong RA, Asanuma I et al. 2011. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8:489–503
    [Google Scholar]
  140. Sathyendranath S, Platt T, Kovač Ž, Dingle J, Jackson T et al. 2020. Reconciling models of primary production and photoacclimation. Appl. Opt. 59:C100–14
    [Google Scholar]
  141. Schlitzer R 2000. Applying the adjoint method for biogeochemical modeling: export of participate organic matter in the world ocean. Inverse Methods in Global Biogeochemical Cycles P Kasibhatla, M Heimann, P Rayner, N Mahowald, RG Prinn, DE Hartley 107–24 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  142. Schlitzer R. 2002. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. II 49:1623–44
    [Google Scholar]
  143. Schroeder T, Schaale M, Lovell J, Blondeau-Patissier D. 2022. An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation. Remote Sens. Environ. 270:112848
    [Google Scholar]
  144. Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D et al. 2013. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135:77–91
    [Google Scholar]
  145. Siegel DA, Buesseler KO, Behrenfeld MJ, Benitez-Nelson CR, Boss E et al. 2016. Prediction of the export and fate of global ocean net primary production: the EXPORTS Science Plan. Front. . Mar. Sci. 3:22
    [Google Scholar]
  146. Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW. 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28:181–96
    [Google Scholar]
  147. Siegel DA, Cetinić I, Graff JR, Lee CM, Nelson N et al. 2021a. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elem. Sci. Anthr. 9:00107
    [Google Scholar]
  148. Siegel DA, DeVries T, Doney SC, Bell T. 2021b. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16:104003
    [Google Scholar]
  149. Silsbe GM, Behrenfeld MJ, Halsey KH, Milligan AJ, Westberry TK. 2016. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30:1756–77
    [Google Scholar]
  150. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58
    [Google Scholar]
  151. Steinberg DK, Goldthwait SA, Hansell DA. 2002. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep-Sea Res. I 49:1445–61
    [Google Scholar]
  152. Steinberg DK, Landry MR. 2017. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9:413–44
    [Google Scholar]
  153. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008. Bacterial versus zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53:1327–38
    [Google Scholar]
  154. Stramski D, Joshi I, Reynolds RA. 2022. Ocean color algorithms to estimate the concentration of particulate organic carbon in surface waters of the global ocean in support of a long-term data record from multiple satellite missions. Remote Sens. Environ. 269:112776
    [Google Scholar]
  155. Stukel MR, Aluwihare LI, Barbeau KA, Chekalyuk AM, Goericke R et al. 2017. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. PNAS 114:1252–57
    [Google Scholar]
  156. Stukel MR, Ohman MD, Benitez-Nelson CR, Landry MR. 2013. Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Mar. Ecol. Prog. Ser. 491:47–65
    [Google Scholar]
  157. Taylor JR, Smith KM, Vreugdenhil CA. 2020. The influence of submesoscales and vertical mixing on the export of sinking tracers in large-eddy simulations. J. Phys. Oceanogr. 50:1319–39
    [Google Scholar]
  158. Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130:205–48
    [Google Scholar]
  159. Weber T, Cram JA, Leung SW, DeVries T, Deutsch C. 2016. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. PNAS 113:8606–11
    [Google Scholar]
  160. Werdell PJ 2018. PACE ocean color science data product requirements. Data Product Requirements and Error Budgets Consensus Document I Cetinić, CR McClain, PJ Werdell 1–5 PACE Tech. Rep. Ser . Vol. 6 Greenbelt, MD: Goddard Space Flight Cent.
    [Google Scholar]
  161. Werdell PJ, Behrenfeld MJ, Bontempi PS, Boss E, Cairns B et al. 2019. The Plankton, Aerosol, Cloud, Ocean Ecosystem mission: status, science, advances. Bull. Am. Meteorol. Soc. 100:1775–94
    [Google Scholar]
  162. Werdell PJ, Franz BA, Bailey SW, Feldman GC, Boss E et al. 2013. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 52:2019–37
    [Google Scholar]
  163. Westberry T, Behrenfeld MJ, Siegel DA, Boss E. 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 22:GB2024
    [Google Scholar]
/content/journals/10.1146/annurev-marine-040722-115226
Loading
/content/journals/10.1146/annurev-marine-040722-115226
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error