Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A machine learning model using SNPs obtained from a genome-wide association study predicts the onset of vincristine-induced peripheral neuropathy

Abstract

Vincristine treatment may cause peripheral neuropathy. In this study, we identified the genes associated with the development of peripheral neuropathy due to vincristine therapy using a genome-wide association study (GWAS) and constructed a predictive model for the development of peripheral neuropathy using genetic information-based machine learning. The study included 72 patients admitted to the Department of Hematology, Tokushima University Hospital, who received vincristine. Of these, 56 were genotyped using the Illumina Asian Screening Array-24 Kit, and a GWAS for the onset of peripheral neuropathy caused by vincristine was conducted. Using Sanger sequencing for 16 validation samples, the top three single nucleotide polymorphisms (SNPs) associated with the onset of peripheral neuropathy were determined. Machine learning was performed using the statistical software R package “caret”. The 56 GWAS and 16 validation samples were used as the training and test sets, respectively. Predictive models were constructed using random forest, support vector machine, naive Bayes, and neural network algorithms. According to the GWAS, rs2110179, rs7126100, and rs2076549 were associated with the development of peripheral neuropathy on vincristine administration. Machine learning was performed using these three SNPs to construct a prediction model. A high accuracy of 93.8% was obtained with the support vector machine and neural network using rs2110179 and rs2076549. Thus, peripheral neuropathy development due to vincristine therapy can be effectively predicted by a machine learning prediction model using SNPs associated with it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of associations from the GWAS of peripheral neuropathy.
Fig. 2: Regional association plot for a peripheral neuropathy-associated locus.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nikanjam M, Sun A, Albers M, Mangalindin K, Song E, Vempaty H, et al. Vincristine-associated neuropathy with antifungal usage: A Kaiser Northern California experience. J Pediatr Hematol Oncol. 2018;40:e273–7. https://doi.org/10.1097/MPH.0000000000001220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Triarico S, Romano A, Attinà G, Capozza MA, Maurizi P, Mastrangelo S, et al. Vincristine-Induced Peripheral Neuropathy (VIPN) in pediatric tumors: mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci. 2021;22:4112 https://doi.org/10.3390/ijms22084112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlson K, Ocean AJ. Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer. 2011;11:73–81. https://doi.org/10.1016/j.clbc.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  4. Verma P, Devaraj J, Skiles JL, Sajdyk T, Ho RH, Hutchinson R, et al. A metabolomics approach for early prediction of vincristine-induced peripheral neuropathy. Sci Rep. 2020;10:9659 https://doi.org/10.1038/s41598-020-66815-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sim JJ, Chan FM, Chen S, Meng Tan BH, Mi Aung KM. Achieving GWAS with homomorphic encryption. BMC Med Genom. 2020;13(Suppl 7):90 https://doi.org/10.1186/s12920-020-0717-y.

    Article  Google Scholar 

  6. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20:1034–41. https://doi.org/10.1093/hmg/ddq537

    Article  CAS  PubMed  Google Scholar 

  7. Tohkin M, Kaniwa N, Saito Y, Sugiyama E, Kurose K, Nishikawa J, et al. Japan Pharmacogenomics Data Science Consortium. A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J. 2013;13:60–9. https://doi.org/10.1038/tpj.2011.41

    Article  CAS  PubMed  Google Scholar 

  8. Deo RC. Machine learning in medicine. Circulation 2015;132:1920–30. https://doi.org/10.1161/CIRCULATIONAHA

    Article  PubMed  PubMed Central  Google Scholar 

  9. Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med. 2018;6:837–45. https://doi.org/10.1016/S2213-2600(18)30286-8

    Article  PubMed  Google Scholar 

  10. He S, Ye T, Wang R, Zhang C, Zhang X, Sun G, et al. An in silico model for predicting drug-induced hepatotoxicity. Int J Mol Sci. 2019;20:1897 https://doi.org/10.3390/ijms20081897

    Article  CAS  PubMed Central  Google Scholar 

  11. Oyaga-Iriarte E, Insausti A, Sayar O, Aldaz A. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J Pharm Sci. 2019;140:20–5. https://doi.org/10.1016/j.jphs.2019.03.004

    Article  CAS  Google Scholar 

  12. Mo X, Chen X, Ieong C, Zhang S, Li H, Li J, et al. Early prediction of clinical response to etanercept treatment in juvenile idiopathic arthritis using machine learning. Front Pharm. 2020;11:1164 https://doi.org/10.3389/fphar.2020.01164

    Article  CAS  Google Scholar 

  13. Nguyen DA, Nguyen CH, Mamitsuka H. A survey on adverse drug reaction studies: data, tasks and machine learning methods. Brief Bioinform. 2021;22:164–77. https://doi.org/10.1093/bib/bbz140

    Article  PubMed  Google Scholar 

  14. Huang CY, Liao KW, Chou CH, Shrestha S, Yang CD, Chiew MY, et al. Pilot study to establish a novel five-gene biomarker panel for predicting lymph node metastasis in patients with early stage endometrial cancer. Front Oncol. 2020;9:1508 https://doi.org/10.3389/fonc.2019.01508

    Article  PubMed  PubMed Central  Google Scholar 

  15. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97. https://doi.org/10.1086/521987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26. https://doi.org/10.1016/j.ajhg.2015.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7. https://doi.org/10.1093/bioinformatics/btq419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  20. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):D930–4. https://doi.org/10.1093/nar/gkr917.

    Article  CAS  Google Scholar 

  21. Kuhn M Building predictive models in R using the caret package. J. Stat. Softw. 2008;28:1–26. Building predictive models in R using the caret package. J Stat Softw (jstatsoft.org).

  22. Son GY, Subedi KP, Ong HL, Noyer L, Saadi H, Zheng C, et al. STIM2 targets Orai1/STIM1 to the AKAP79 signaling complex and confers coupling of Ca2+ entry with NFAT1 activation. Proc Natl Acad Sci USA 2020;117:16638–48. https://doi.org/10.1073/pnas.1915386117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu T, Zhang Y, Su Y, Zhou D, Xu Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun Signal. 2022;20:33 https://doi.org/10.1186/s12964-022-00829-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gemes G, Bangaru ML, Wu HE, Tang Q, Weihrauch D, Koopmeiners AS, et al. Store-operated Ca2+ entry in sensory neurons: functional role and the effect of painful nerve injury. J Neurosci. 2011;31:3536–49. https://doi.org/10.1523/JNEUROSCI.5053-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saraswat D, Shayya HJ, Polanco JJ, Tripathi A, Welliver RR, Pol SU, et al. Overcoming the inhibitory microenvironment surrounding oligodendrocyte progenitor cells following experimental demyelination. Nat Commun. 2021;12:1923 https://doi.org/10.1038/s41467-021-22263-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Rühlmann C, et al. STIM1 controls neuronal Ca²+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron. 2014;82:635–44. https://doi.org/10.1016/j.neuron.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  27. Ryu C, Jang DC, Jung D, Kim YG, Shim HG, Ryu HH, et al. STIM1 regulates somatic C2+signals and intrinsic firing properties of cerebellar purkinje neurons. J Neurosci. 2017;37:8876–94. https://doi.org/10.1523/JNEUROSCI.3973-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, et al. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron. 2021;109:1314–32.e5. https://doi.org/10.1016/j.neuron.2021.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D’Hooge R, et al. Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. J Cell Mol Med. 2009;13:4505–21. https://doi.org/10.1111/j.1582-4934.2008.00558.x

    Article  CAS  PubMed  Google Scholar 

  30. Hiramoto M, Udagawa H, Watanabe A, Miyazawa K, Ishibashi N, Kawaguchi M, et al. Comparative analysis of type 2 diabetes-associated SNP alleles identifies allele-specific DNA-binding proteins for the KCNQ1 locus. Int J Mol Med. 2015;36:222–30. https://doi.org/10.3892/ijmm.2015.2203

    Article  CAS  PubMed  Google Scholar 

  31. Anheim M, Tranchant C. Neuropathies périphériques associées aux ataxies cérébelleuses héréditaires [Peripheral neuropathies associated with hereditary cerebellar ataxias]. Rev Neurol. 2011;167:72–6. https://doi.org/10.1016/j.neurol.2010.07.041. French

    Article  CAS  PubMed  Google Scholar 

  32. Verma P, Devaraj J, Skiles JL, Sajdyk T, Ho RH, Hutchinson R, et al. A metabolomics approach for early prediction of vincristine-induced peripheral neuropathy. Sci Rep. 2020;10:9659 https://doi.org/10.1038/s41598-020-66815-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Prof. Aiko Yamauchi of the Tokushima University for her useful suggestions and discussions. We would like to thank Editage for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

YS conceived and designed the study; HY, RO, and YS performed the experiments and data acquisition; HY and YS analyzed the data; NO, SN, KK, SF, HM, KI, and MA collected information on patient diagnoses and side effects; YS collected the samples; HY, RO, and YS wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Youichi Sato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, H., Ohmori, R., Okada, N. et al. A machine learning model using SNPs obtained from a genome-wide association study predicts the onset of vincristine-induced peripheral neuropathy. Pharmacogenomics J 22, 241–246 (2022). https://doi.org/10.1038/s41397-022-00282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-022-00282-8

Search

Quick links