Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2022

Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities

  • Oranso T. Mahlangu ORCID logo EMAIL logo , Machawe M. Motsa , Thabo I. Nkambule and Bhekie B. Mamba

Abstract

This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.


Corresponding author: Oranso T. Mahlangu, College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa, E-mail:

Acknowledgements

The authors would like to thank all anonymous reviewers and editors for their insightful comments and suggestions on revising and improving the quality of the review.

  1. Research funding: This work was funded by the Institute for Nanotechnology and Water Sustainability, University of South Africa.

  2. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Acero, J.L., Benitez, F.J., Teva, F., and Leal, A.I. (2010). Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem. Eng. J. 163: 264–272.10.1016/j.cej.2010.07.060Search in Google Scholar

Ademollo, N., Spataro, F., Rauseo, J., Pescatore, T., Fattorini, N., Valsecchi, S., Polesello, S., and Patrolecco, L. (2021). Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): environmental contamination, seasonal trend and climate change. Mar. Pollut. Bull. 163: 111900.10.1016/j.marpolbul.2020.111900Search in Google Scholar PubMed

Agenson, K.O. and Urase, T. (2007). Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Separ. Purif. Technol. 55: 147–156.10.1016/j.seppur.2006.11.010Search in Google Scholar

Aher, A., Nickerson, T., Jordan, C., Thorpe, F., Hatakeyama, E., Ormsbee, L., Majumder, M., and Bhattacharyya, D. (2020). Ion and organic transport in Graphene oxide membranes: model development to difficult water remediation applications. J. Membr. Sci. 604: 118024.10.1016/j.memsci.2020.118024Search in Google Scholar PubMed PubMed Central

Albergamo, V., Blankert, B., Cornelissen, E.R., Hofs, B., Knibbe, W.J., van der Meer, W., and de Voogt, P. (2019). Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water Res. 148: 535–545.10.1016/j.watres.2018.09.029Search in Google Scholar PubMed

Albergamo, V., Blankert, B., van der Meer, W.G.J., de Voogt, P., and Cornelissen, E.R. (2020). Removal of polar organic micropollutants by mixed-matrix reverse osmosis membranes. Desalination 479: 114337.10.1016/j.desal.2020.114337Search in Google Scholar

Alhweij, H., Emanuelsson, E.A.C., Shahid, S., and Wenk, J. (2021). Simplified in-situ tailoring of cross-linked self-doped sulfonated polyaniline (S-PANI) membranes for nanofiltration applications. J. Membr. Sci. 637: 119654.10.1016/j.memsci.2021.119654Search in Google Scholar

Anand, A., Unnikrishnan, B., Mao, J.Y., Lin, H.J., and Huang, C.C. (2018). Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–a review. Desalination 429: 119–133.10.1016/j.desal.2017.12.012Search in Google Scholar

Andrade, P.F., de Faria, A.F., Oliveira, S.R., Arruda, M.A.Z., and Gonçalves Mdo, C. (2015). Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res. 81: 333–342.10.1016/j.watres.2015.05.006Search in Google Scholar PubMed

Aneesh, V., Antony, R., Paramasivan, G., and Selvaraju, N. (2016). Distillation technology and need of simultaneous design and control: a review. Chem. Eng. Process. Process Intensif. 104: 219–242.10.1016/j.cep.2016.03.016Search in Google Scholar

Appleman, T.D., Higgins, C.P., Quiñones, O., Vanderford, B.J., Kolstad, C., Zeigler-Holady, J.C., and Dickenson, E.R.V. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 51: 246–255.10.1016/j.watres.2013.10.067Search in Google Scholar PubMed

Ashar, A., Bhatti, I.A., Ashraf, M., Tahir, A.A., Aziz, H., Yousuf, M., Ahmad, M., Mohsin, M., and Bhutta, Z.A. (2020). Fe3+ @ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J. Clean. Prod. 246: 119010.10.1016/j.jclepro.2019.119010Search in Google Scholar

Asif, M.B., Maqbool, T., and Zhang, Z. (2020). Electrochemical membrane bioreactors: state-of-the-art and future prospects. Sci. Total Environ. 741: 140233.10.1016/j.scitotenv.2020.140233Search in Google Scholar PubMed

aus der Beek, T., Weber, F.-A., Bergmann, A., Hickmann, S., Eber, I., Hein, A., and Küster, A. (2016). Pharmaceuticals in the environment - global occurrences and perspectives. Environ. Toxicol. Chem. 35: 823–835.10.1002/etc.3339Search in Google Scholar PubMed

Avlonitis, S.A. (2002). Operational water cost and productivity improvements for small-size RO desalination plants. Desalination 142: 295–304.10.1016/S0011-9164(02)00210-2Search in Google Scholar

Azaïs, A., Mendret, J., Petit, E., and Brosillon, S. (2016). Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration. Water Res. 104: 156–167.10.1016/j.watres.2016.08.014Search in Google Scholar PubMed

Bagnall, J.P., Evans, S.E., Wort, M.T., Lubben, A.T., and Kasprzyk-Hordern, B. (2012). Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. J. Chromatogr. A 1249: 115–129.10.1016/j.chroma.2012.06.012Search in Google Scholar PubMed

Bao, M., Zhu, G., Wang, L., Wang, M., and Gao, C. (2013). Preparation of monodispersed spherical mesoporous nanosilica – polyamide thin fi lm composite reverse osmosis membranes via interfacial polymerization. Desalination 309: 261–266.10.1016/j.desal.2012.10.028Search in Google Scholar

Barber, L.B., Keefe, S.H., Antweiler, R.C., Taylor, H.E., and Wass, R.D. (2006). Accumulation of contaminants in fish from wastewater treatment wetlands. Environ. Sci. Technol. 40: 603–611.10.1021/es0514287Search in Google Scholar PubMed

Basiuk, M., Brown, R.A., Cartwright, D., Davison, R., and Wallis, P.M. (2017). Trace organic compounds in rivers, streams, and wastewater in southeastern Alberta, Canada. Inl. Water 7: 283–296.10.1080/20442041.2017.1329908Search in Google Scholar

Bayoudh, S., Othmane, A., Mora, L., and Ben, H. (2009). Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Colloids Surf. B Biointerfaces J. 73: 1–9.10.1016/j.colsurfb.2009.04.030Search in Google Scholar PubMed

Bean, T.G., Rattner, B.A., Lazarus, R.S., Day, D.D., Burket, S.R., Brooks, B.W., Haddad, S.P., and Bowerman, W.W. (2018). Pharmaceuticals in water , fish and osprey nestlings in Delaware River and Bay. Environ. Pollut. 232: 533–545.10.1016/j.envpol.2017.09.083Search in Google Scholar PubMed

Beier, S., Cramer, C., Köster, S., Mauer, C., Palmowski, L., Schröder, H.F., and Pinnekamp, J. (2011). Full scale membrane bioreactor treatment of hospital wastewater as forerunner for hot-spot wastewater treatment solutions in high density urban areas. Water Sci. Technol. 63: 66–71.10.2166/wst.2011.010Search in Google Scholar PubMed

Bellona, C. and Drewes, J.E. (2005). The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 249: 227–234.10.1016/j.memsci.2004.09.041Search in Google Scholar

Bendavid, A., Bason, S., Jopp, J., Oren, Y., and Freger, V. (2006). Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection. J. Membr. Sci. 281: 480–490.10.1016/j.memsci.2006.04.017Search in Google Scholar

Berg, P., Hagmeyer, G., and Gimbel, R. (1997). Removal of pesticides and other micropollutants by nanofiltration. Desalination 113: 205–208.10.1016/S0011-9164(97)00130-6Search in Google Scholar

Bhattacharjee, S., Sharma, A., and Bhattacharya, P.K. (1994). Surface interactions in osmotic pressure controlled flux decline during ultrafiltration. Langmuir 10: 4710–4720.10.1021/la00024a053Search in Google Scholar

Bi, R., Zhang, R., Shen, J., Liu, Y., He, M., and You, X. (2019). Graphene quantum dots engineered nano filtration membrane for ultrafast molecular separation. J. Membr. Sci. 572: 504–511.10.1016/j.memsci.2018.11.044Search in Google Scholar

Blandin, G., Gautier, C., Sauchelli Toran, M., Monclús, H., Rodriguez-Roda, I., and Comas, J. (2018). Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study. Chem. Eng. J. 339: 268–277.10.1016/j.cej.2018.01.103Search in Google Scholar

Borrull, J., Colom, A., Fabregas, J., Borrull, F., and Pocurull, E. (2021). Presence, behaviour and removal of selected organic micropollutants through drinking water treatment. Chemosphere 276: 130023.10.1016/j.chemosphere.2021.130023Search in Google Scholar PubMed

Botton, S., Verliefde, A.R.D., Quach, N.T., and Cornelissen, E.R. (2012). Influence of biofouling on pharmaceuticals rejection in NF membrane filtration. Water Res. 46: 5848–5860.10.1016/j.watres.2012.07.010Search in Google Scholar PubMed

Boussouga, Y.A., Frey, H., and Schäfer, A.I. (2021). Removal of arsenic(V) by nanofiltration: impact of water salinity, pH and organic matter. J. Membr. Sci. 618.10.1016/j.memsci.2020.118631Search in Google Scholar

Boussu, K., Zhang, Y., Cocquyt, J., Van der Meeren, P., Volodin, A., Van Haesendonck, C., Martens, J.A., and Van der Bruggen, B. (2006). Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance. J. Membr. Sci. 278: 418–427.10.1016/j.memsci.2005.11.027Search in Google Scholar

Braeken, L., Ramaekers, R., Zhang, Y., Maes, G., Van der Bruggen, B., and Vandecasteele, C. (2005). Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. J. Membr. Sci. 252: 195–203.10.1016/j.memsci.2004.12.017Search in Google Scholar

Braeken, L. and Van der Bruggen, B. (2009). Feasibility of nanofiltration for the removal of endocrine disrupting compounds. Desalination 240: 127–131.10.1016/j.desal.2007.11.069Search in Google Scholar

Brant, J.A. and Childress, A.E. (2002). Assessing short-range membrane – colloid interactions using surface energetics. J. Membr. Sci. 203: 257–273.10.1016/S0376-7388(02)00014-5Search in Google Scholar

Brant, J.A. and Childress, A.E. (2004). Colloidal adhesion to hydrophilic membrane surfaces. J. Membr. Sci. 241: 235–248.10.1016/j.memsci.2004.04.036Search in Google Scholar

Brown, A.K. and Wong, C.S. (2018). Distribution and fate of pharmaceuticals and their metabolite conjugates in a municipal wastewater treatment plant. Water Res. 144: 774–783.10.1016/j.watres.2018.08.034Search in Google Scholar PubMed

Burns, E.E., Carter, L.J., Kolpin, D.W., Thomas-Oates, J., and Boxall, A.B.A. (2018). Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Res. 137: 72–85.10.1016/j.watres.2018.02.066Search in Google Scholar PubMed

Butt, H.J., Cappella, B., and Kappl, M. (2005). Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59: 1–152.10.1016/j.surfrep.2005.08.003Search in Google Scholar

Caballo, C., Sicilia, M.D., and Rubio, S. (2014). Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry. Talanta 134: 325–332.10.1016/j.talanta.2014.11.016Search in Google Scholar PubMed

Caldera, U. and Breyer, C. (2017). Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future. Water Resour. Res. 53: 10523–10538.10.1002/2017WR021402Search in Google Scholar

Camacho-Muñoz, D. and Kasprzyk-Hordern, B. (2015). Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection. Anal. Bioanal. Chem. 409: 9085–9104.10.1007/s00216-015-9075-6Search in Google Scholar PubMed

Cartagena, P., El Kaddouri, M., Cases, V., Trapote, A., and Prats, D. (2013). Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR-NF/RO treatment. Separ. Purif. Technol. 110: 132–143.10.1016/j.seppur.2013.03.024Search in Google Scholar

Castrignanò, E., Lubben, A., and Kasprzyk-Hordern, B. (2016). Enantiomeric profiling of chiral drug biomarkers in wastewater with the usage of chiral liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 1438: 84–99.10.1016/j.chroma.2016.02.015Search in Google Scholar PubMed

Cath, T.Y., Hancock, N.T., Lundin, C.D., Hoppe-Jones, C., and Drewes, J.E. (2010). A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J. Membr. Sci. 362: 417–426.10.1016/j.memsci.2010.06.056Search in Google Scholar

Cecconet, D., Molognoni, D., Callegari, A., and Capodaglio, A.G. (2017). Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: a review and future perspectives. J. Environ. Chem. Eng. 5: 3590–3603.10.1016/j.jece.2017.07.020Search in Google Scholar

Chang, E.-E., Chang, Y.-C., Liang, C.-H., Huang, C.-P., and Chiang, P.-C. (2012). Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan. J. Hazard Mater. 221–222: 19–27.10.1016/j.jhazmat.2012.03.051Search in Google Scholar PubMed

Chen, X.D., Wang, Z., Liu, D.Y., Xiao, K., Guan, J., Xie, Y.F., Wang, X.M, and Waite, T.D. (2018). Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles. Chemosphere 191: 226–234.10.1016/j.chemosphere.2017.09.139Search in Google Scholar PubMed

Chen, L., Xu, P., and Wang, H. (2020). Interplay of the factors affecting water flux and salt rejection in membrane distillation: a state-of-the-art critical review. Water (Switzerland) 12: 2841.10.3390/w12102841Search in Google Scholar

Cheng, G., Xue, H., Zhang, Z., Chen, S., and Jiang, S. (2008). A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities**. Angew. Chem. Int. Ed. Engl. 47 8831–8834.10.1002/anie.200803570Search in Google Scholar PubMed

Chien, Z., Jye, W., Chun, K., Al-ghouti, M.A., and Fauzi, A. (2021). Improving properties of thin film nanocomposite membrane through polyethyleneimine intermediate layer: a parametric study. Separ. Purif. Technol. 274: 119035.10.1016/j.seppur.2021.119035Search in Google Scholar

Childress, A.E. and Elimelech, M. (1996). Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci. 119: 253–268.10.1016/0376-7388(96)00127-5Search in Google Scholar

Chon, K., KyongShon, H., and Cho, J. (2012). Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants. Bioresour. Technol. 122: 181–188.10.1016/j.biortech.2012.04.048Search in Google Scholar PubMed

Chong, T.H., Wong, F.S., and Fane, A.G. (2007). Enhanced concentration polarization by unstirred fouling layers in reverse osmosis: detection by sodium chloride tracer response technique. J. Membr. Sci. 287: 198–210.10.1016/j.memsci.2006.10.035Search in Google Scholar

Couto, C.F., Lange, L.C., and Amaral, M.C.S. (2018). A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Proc. Eng. 26: 156–175.10.1016/j.jwpe.2018.10.010Search in Google Scholar

Corsolini, S., Ademollo, N., Martellini, T., Randazzo, D., Vacchi, M., and Cincinelli, A. (2017). Legacy persistent organic pollutants including PBDEs in the trophic web of the Ross Sea (Antarctica). Chemosphere 185: 699–708.10.1016/j.chemosphere.2017.07.054Search in Google Scholar PubMed

Couto, C.F., Amaral, M.C.S., Lange, L.C., and de Souza Santos Santos, L.V. (2019). Effect of humic acid concentration on pharmaceutically active compounds (PhACs) rejection by direct contact membrane distillation (DCMD). Separ. Purif. Technol. 212: 920–928.10.1016/j.seppur.2018.12.012Search in Google Scholar

Dang, H.Q., Price, W.E., and Nghiem, L.D. (2014). The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270. Separ. Purif. Technol. 125: 43–51.10.1016/j.seppur.2013.12.043Search in Google Scholar

Dharupaneedi, S.P., Nataraj, S.K., Nadagouda, M., Reddy, K.R., Shukla, S.S., and Aminabhavi, T.M. (2019). Membrane-based separation of potential emerging pollutants. Separ. Purif. Technol. 210: 850–866.10.1016/j.seppur.2018.09.003Search in Google Scholar PubMed PubMed Central

Ding, H., Zhang, J., He, H., Zhu, Y., Dionysiou, D.D., Liu, Z., and Zhao, C. (2021). Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Sci. Total Environ. 755: 142658.10.1016/j.scitotenv.2020.142658Search in Google Scholar PubMed

Dishon, M., Zohar, O., and Sivan, U. (2011). Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes. Langmuir 27: 12977–12984.10.1021/la202533sSearch in Google Scholar PubMed

Dano, E., Neziri, A., and Halili, J. (2016). Distribution of Polychlorinated Biphenyls and Organochlorinated Pesticides in the Albanian Part of the Drin and Buna Rivers. J. Environ. Prot. Ecol. 17: 102–107.Search in Google Scholar

De Wever, H., Weiss, S., Reemtsma, T., Vereecken, J., Müller, J., Knepper, T., Rörden, O., Gonzalez, S., Barcelo, D., and Dolores Hernando, M. (2007). Comparison of sulfonated and other micropollutants removal in membrane bioreactor and conventional wastewater treatment. Water Res. 41: 935–945.10.1016/j.watres.2006.11.013Search in Google Scholar PubMed

Doederer, K., Farré, M.J., Pidou, M., Weinberg, H.S., and Gernjak, W. (2014). Rejection of disinfection by-products by RO and NF membranes: influence of solute properties and operational parameters. J. Membr. Sci. 467: 195–205.10.1016/j.memsci.2014.05.029Search in Google Scholar

Du, G., Wang, X., Zhang, L., Feng, Y., and Liu, Y. (2013). One-step green synthesis of graphene–ZnO nanocomposites. Mater. Lett. 98: 168–170.10.1016/j.matlet.2013.02.046Search in Google Scholar

Ducom, G. and Cabassud, C. (1999). Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination 124: 115–123.10.1016/S0011-9164(99)00095-8Search in Google Scholar

Egea-Corbacho, A., Gutiérrez Ruiz, S., and Quiroga Alonso, J.M. (2019). Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: full–scale pilot plant. J. Clean. Prod. 214: 514–523.10.1016/j.jclepro.2018.12.297Search in Google Scholar

Ejraei, A., Aroon, M.A., and Ziarati Saravani, A. (2019). Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes. J. Water Proc. Eng. 28: 45–53.10.1016/j.jwpe.2019.01.003Search in Google Scholar

Ensano, B.M.B., Borea, L., Naddeo, V., de Luna, M.D.G., and Belgiorno, V. (2019). Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors. Environ. Sci. Pollut. Res. 26: 1103–1112.10.1007/s11356-017-9097-zSearch in Google Scholar PubMed

Evans, S.E., Bagnall, J., and Kasprzyk-Hordern, B. (2016). Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine, MDMA and MDA) in urban water. Environ. Pollut. 215: 152–163.10.1016/j.envpol.2016.04.103Search in Google Scholar PubMed

Fatta-Kassinos, D., Vasquez, M.I., and Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85: 693–709.10.1016/j.chemosphere.2011.06.082Search in Google Scholar PubMed

Feng, L., van Hullebusch, E.D., Rodrigo, M.A., Esposito, G., and Oturan, M.A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J 228: 944–964.10.1016/j.cej.2013.05.061Search in Google Scholar

Fini, M.N., Madsen, H.T., and Muff, J. (2019). The effect of water matrix, feed concentration and recovery on the rejection of pesticides using NF/RO membranes in water treatment. Separ. Purif. Technol. 215: 521–527.10.1016/j.seppur.2019.01.047Search in Google Scholar

Flyborg, L., Björlenius, B., Ullner, M., and Persson, K.M. (2017). A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed. Separ. Purif. Technol. 174: 212–221.10.1016/j.seppur.2016.10.029Search in Google Scholar

Foureaux, A.F.S., Reis, E.O., Lebron, Y., Moreira, V., Santos, L.V., Amaral, M.S., and Lange, L.C. (2019). Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Separ. Purif. Technol. 212: 171–179.10.1016/j.seppur.2018.11.018Search in Google Scholar

Freger, V. (2004). Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study. Environ. Sci. Technol. 38: 3168–3175.10.1021/es034815uSearch in Google Scholar PubMed

Fujioka, T., Nghiem, L.D., Khan, S.J., McDonald, J.A., Poussade, Y., and Drewes, J.E. (2012). Effects of feed solution characteristics on the rejection of N-nitrosamines by reverse osmosis membranes. J. Membr. Sci. 409–410: 66–74.10.1016/j.memsci.2012.03.035Search in Google Scholar

Fujioka, T., Aizawa, H., and Kodamatani, H. (2020a). Fouling substances causing variable rejection of a small and uncharged trace organic chemical by reverse osmosis membranes. Environ. Technol. Innovat. 17: 100576.10.1016/j.eti.2019.100576Search in Google Scholar

Fujioka, T., Kodamatani, H., Yujue, W., Dan, K., Riani, E., Yuan, H., Fang, M., Allen, S., Yu, K.D., Wanjaya, E.R., et al.. (2020b). Assessing the passage of small pesticides through reverse osmosis membranes. J. Membr. Sci. 595: 117577.10.1016/j.memsci.2019.117577Search in Google Scholar

Ganj, M., Asadollahi, M., and Mousavi, S.A. (2019). Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J. Polym. Res. 26: 231.10.1007/s10965-019-1832-3Search in Google Scholar

Gao, F., Wang, J., Zhang, H., Hang, M.A., Cui, Z., and Yang, G. (2017). Interaction energy and competitive adsorption evaluation of different NOM fractions on aged membrane surfaces. J. Membr. Sci. 542: 195–207.10.1016/j.memsci.2017.08.020Search in Google Scholar

García-Gómez, C., Drogui, P., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Estrada-Alvgarado, M.I., and Álvarez, L.H. (2016). Combined membrane bioreactor and electrochemical oxidation using Ti/PbO2 anode for the removal of carbamazepine. J. Taiwan Inst. Chem. Eng. 64: 211–219.10.1016/j.jtice.2016.04.024Search in Google Scholar

Garcia-Ivars, J., Martella, L., Massella, M., Carbonell-Alcaina, C., Alcaina-Miranda, M.I., and Iborra-Clar, M.I. (2017). Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res. 125: 360–373.10.1016/j.watres.2017.08.070Search in Google Scholar PubMed

Geise, G.M., Bum, H., Sagle, A.C., Freeman, B.D., and Mcgrath, J.E. (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369: 130–138.10.1016/j.memsci.2010.11.054Search in Google Scholar

Geise, G.M., Paul, D.R., and Freeman, B.D. (2014). Progress in Polymer Science Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39: 1–42.10.1016/j.progpolymsci.2013.07.001Search in Google Scholar

Gomes, J., Costa, R., Quinta-Ferreira, R.M., and Martins, R.C. (2017). Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 586: 265–283.10.1016/j.scitotenv.2017.01.216Search in Google Scholar PubMed

Grung, M., Meland, S., Ruus, A., Ranneklev, S., Fjeld, E., Kringstad, A., Rundberget, J.T., Dela Cruz, M., and Christensen, J.H. (2021). Occurrence and trophic transport of organic compounds in sedimentation ponds for road runoff. Sci. Total Environ. 751: 141808.10.1016/j.scitotenv.2020.141808Search in Google Scholar PubMed

Gu, L., Xie, M.Y., Jin, Y., He, M., Xing, X.Y., Yu, Y., and Wu, Q.Y. (2019). Construction of antifouling membrane surfaces through layer-by-layer self-assembly of lignosulfonate and polyethyleneimine. Polymers (Basel). 11: 9–11.10.3390/polym11111782Search in Google Scholar PubMed PubMed Central

Gumbi, N.N., Li, J., Mamba, B.B., and Nxumalo, E.N. (2020). Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/sulfonated polysulfone/O-MWCNT supports. Desalination 474: 114176.10.1016/j.desal.2019.114176Search in Google Scholar

Gurung, K., Ncibi, M.C., and Sillanpää, M. (2019). Removal and fate of emerging organic micropollutants (EOMs) in municipal wastewater by a pilot-scale membrane bioreactor (MBR) treatment under varying solid retention times. Sci. Total Environ. 667: 671–680.10.1016/j.scitotenv.2019.02.308Search in Google Scholar PubMed

D’Haese, A., Ortega-Bravo, J.C., Harmsen, D., Vanhaecke, L., Verliefde, A.R.D., Jeison, D., and Cornelissen, E.R. (2021). Analysing organic micropollutant accumulation in closed loop FO–RO systems: a pilot plant study. J. Membr. Sci. 626: 119182.10.1016/j.memsci.2021.119182Search in Google Scholar

Haarstad, K., Bavor, H.J., and Mæhlum, T. (2012). Organic and metallic pollutants in water treatment and natural wetlands: a review. Water Sci. Technol. 65: 76–99.10.2166/wst.2011.831Search in Google Scholar PubMed

Hai, F.I., Tessmer, K., Nguyen, L.N., Kang, J., Price, W.E., and Nghiem, L.D. (2011). Removal of micropollutants by membrane bioreactor under temperature variation. J. Membr. Sci. 383: 144–151.10.1016/j.memsci.2011.08.047Search in Google Scholar

Han, L., Xiao, T., Tan, Y.Z., Fane, A.G., and Chew, J.W. (2017). Contaminant rejection in the presence of humic acid by membrane distillation for surface water treatment. J. Membr. Sci. 541: 291–299.10.1016/j.memsci.2017.07.013Search in Google Scholar

Hancock, N.T., Xu, P., Heil, D.M., Bellona, C., and Cath, T.Y. (2011). Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environ. Sci. Technol. 45: 8483–8490.10.1021/es201654kSearch in Google Scholar PubMed

Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H., Laursen, D., et al.. (2011). Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62: 1683–1692.10.1016/j.marpolbul.2011.06.004Search in Google Scholar PubMed

Hossein, M., Abadi, D., Rabiee, H., and Vatanpour, V. (2019). Comparing the effect of incorporation of various nanoparticulate on the performance and antifouling properties of polyethersulfone nanocomposite membranes. J. Water Proc. Eng. 27: 47–57.10.1016/j.jwpe.2018.11.012Search in Google Scholar

Hung, W., Chiao, Y., Sengupta, A., Lin, Y., Wickramasinghe, S.R., Hu, C., Tsai, H., Lee, K., and Lai, J. (2019). Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance. Carbon N. Y. 142: 337–345.10.1016/j.carbon.2018.10.058Search in Google Scholar

Hyland, K.C., Dickenson, E.R.V., Drewes, J.E., and Higgins, C.P. (2012). Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res. 46: 1958–1968.10.1016/j.watres.2012.01.012Search in Google Scholar PubMed

Nascimbén Santos, É., László, Z., Hodúr, C., Arthanareeswaran, G., and Veréb, G. (2020). Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review. Asia Pac. J. Chem. Eng. 15: 1–29.10.1002/apj.2533Search in Google Scholar

Ilyas, S., Abtahi, S.M., Akkilic, N., Roesink, H.D.W., and de Vos, W.M. (2017). Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. J. Membr. Sci. 537: 220–228.10.1016/j.memsci.2017.05.027Search in Google Scholar

Im, S.J., Jeong, G., Jeong, S., Cho, J., and Jang, A. (2020). Fouling and transport of organic matter in cellulose triacetate forward-osmosis membrane for wastewater reuse and seawater desalination. Chem. Eng. J. 384: 123341.10.1016/j.cej.2019.123341Search in Google Scholar

Ingrao, C., Failla, S., and Arcidiacono, C. (2020). A comprehensive review of environmental and operational issues of constructed wetland systems. Curr. Opin. Environ. Sci. Heal. 13: 35–45.10.1016/j.coesh.2019.10.007Search in Google Scholar

Into, M., Jönsson, A.S., and Lengdén, G. (2004). Reuse of industrial wastewater following treatment with reverse osmosis. J. Membr. Sci. 242: 21–25.10.1016/j.memsci.2003.07.027Search in Google Scholar

Ismail, N.A.H., Wee, S.Y., Haron, D.E.M., Kamarulzaman, N.H., and Aris, A.Z. (2020). Occurrence of endocrine disrupting compounds in mariculture sediment of Pulau Kukup, Johor, Malaysia. Mar. Pollut. Bull. 150: 110735.10.1016/j.marpolbul.2019.110735Search in Google Scholar PubMed

Jang, E.S., Mickols, W., Sujanani, R., Helenic, A., Dilenschneider, T.J., Kamcev, J., Paul, D.R., and Freeman, B.D. (2019). Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. J. Membr. Sci. 572: 668–675.10.1016/j.memsci.2018.11.006Search in Google Scholar

Jarry, A., Kostecki, R., Chen, G., Bacon, D.J., Newman, J., Park, J., Sastry, A.M., Lu, W., Greer, A.L., Lakes, R.S., et al.. (2015). Sub – 10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348: 1347–1352.10.1126/science.aaa5058Search in Google Scholar PubMed

Jiang, Y., Li, S., Su, J., Lv, X., and Liu, S. (2021). Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment. J. Membr. Sci. 635: 119523.10.1016/j.memsci.2021.119523Search in Google Scholar

Jin, X., Huang, X., and Hoek, E.M.V. (2009). Role of specific ion interactions in seawater RO membrane fouling by alginic acid. Environ. Sci. Technol. 43: 3580–3587.10.1021/es8036498Search in Google Scholar PubMed

Jin, X., Tang, C.Y., Gu, Y., She, Q., and Qi, S. (2011). Boric acid permeation in forward osmosis membrane processes: modeling, experiments, and implications. Environ. Sci. Technol. 45: 2323–2330.10.1021/es103771aSearch in Google Scholar PubMed

Joss, A., Keller, E., Alder, A.C., Göbel, A., McArdell, C.S., Ternes, T., and Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 39: 3139–3152.10.1016/j.watres.2005.05.031Search in Google Scholar PubMed

Judd, S. (2008). The status of membrane bioreactor technology. Trends Biotechnol. 26: 109–116.10.1016/j.tibtech.2007.11.005Search in Google Scholar PubMed

Kandie, F.J., Krauss, M., Beckers, L.M., Massei, R., Fillinger, U., Becker, J., Liess, M., Torto, B., and Brack, W. (2020). Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 714: 136748.10.1016/j.scitotenv.2020.136748Search in Google Scholar PubMed

Kane, R.S., Deschatelets, P., Whitesides, G.M., and York, N. (2003). Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19: 2388–2391.10.1021/la020737xSearch in Google Scholar

Kang, H.J., Ahn, J., Park, H., and Choo, K.H. (2021). Nitrosamine removal: pilot-scale comparison of advanced oxidation, nanofiltration, and biological activated carbon processes. Chemosphere 277: 130249.10.1016/j.chemosphere.2021.130249Search in Google Scholar PubMed

Karagiannis, I.C. and Soldatos, P.G. (2007). Current status of water desalination in the Aegean Islands. Desalination 203: 56–61.10.1016/j.desal.2006.04.006Search in Google Scholar

Kim, S. and Hoek, E.M.V. (2007). Interactions controlling biopolymer fouling of reverse osmosis membranes. Desalination 202: 333–342.10.1016/j.desal.2005.12.072Search in Google Scholar

Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U., and Watanabe, Y. (2003). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 227: 113–121.10.1016/j.memsci.2003.09.005Search in Google Scholar

Kimura, K., Iwase, T., Kita, S., and Watanabe, Y. (2009). Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 43: 3751–3758.10.1016/j.watres.2009.05.042Search in Google Scholar PubMed

Kiso, Y., Muroshige, K., Oguchi, T., Hirose, M., Ohara, T., and Shintani, T. (2011). Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane. J. Membr. Sci. 369: 290–298.10.1016/j.memsci.2010.12.005Search in Google Scholar

Kiso, Y., Muroshige, K., Oguchi, T., Yamanda, T., Hhirose, M., Ohara, T., and Shintani, T. (2010). Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii. J. Membr. Sci. 358: 101–113.10.1016/j.memsci.2010.04.034Search in Google Scholar

Kiso, Y., Sugiura, Y., Kitao, T., and Nishimura, K. (2001). Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 192: 1–10.10.1016/S0376-7388(01)00411-2Search in Google Scholar

Kong, F., Liu, Q., Dong, L., Zhang, T., Wei, Y., Chen, J., Wang, Y., and Guo, C. (2020). Rejection of pharmaceuticals by graphene oxide membranes: role of crosslinker and rejection mechanism. J. Membr. Sci. 612: 118338.10.1016/j.memsci.2020.118338Search in Google Scholar

Konradt, N., Kuhlen, J.G., Rohns, H.P., Schmitt, B., Fischer, U., Binder, T., Schumacher, V., Wagner, C., Kamphausen, S., Müller, U., et al.. (2021). Removal of trace organic contaminants by parallel operation of reverse osmosis and granular activated carbon for drinking water treatment. Membranes 11: 1–18.10.3390/membranes11010033Search in Google Scholar PubMed PubMed Central

Kramer, F.C., Shang, R., Rietveld, L.C., and Heijman, S.J.G. (2019). Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Separ. Purif. Technol. 227: 115675.10.1016/j.seppur.2019.115675Search in Google Scholar

Kusworo, T.D., Susanto, H., Aryanti, N., Rokhati, N., Widiasa, I.N., Al-Aziz, H., Utomo, D.P., Masithoh, D., and Kumoro, A.C. (2021). Preparation and characterization of photocatalytic PSf-TiO2/GO nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater. J. Environ. Chem. Eng. 9: 105066.10.1016/j.jece.2021.105066Search in Google Scholar

Kyzas, G.Z., Fu, J., Lazaridis, N.K., Bikiaris, D.N., and Matis, K.A. (2015). New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J. Mol. Liq. 209: 87–93.10.1016/j.molliq.2015.05.025Search in Google Scholar

Latch, D.E., Packer, J.L., Arnold, W.A., and McNeill, K. (2003). Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. Chem. 158: 63–66.10.1016/S1010-6030(03)00103-5Search in Google Scholar

Lawson, K.W. and Lloyd, D.R. (1997). Membrane distillation. J. Membr. Sci. 124: 1–25.10.1016/S0376-7388(96)00236-0Search in Google Scholar

Lee, S., Park, G., Amy, G., Hong, S.K., Moon, S.H., Lee, D.H., and Cho, J. (2002). Determination of membrane pore size distribution using the fractional rejection of nonionic and charged macromolecules. J. Membr. Sci. 201: 191–201.10.1016/S0376-7388(01)00729-3Search in Google Scholar

Li, A.J., Pal, V.K., and Kannan, K. (2021). A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotoxicol. 3: 91–116.10.1016/j.enceco.2021.01.001Search in Google Scholar

Li, C., Li, H., Yang, Y., and Hou, L. (2020). Removal of pharmaceuticals by fouled forward osmosis membranes: impact of DOM fractions, Ca2+ and real water. Sci. Total Environ. 738: 139757.10.1016/j.scitotenv.2020.139757Search in Google Scholar PubMed

Li, C., Li, S., Tian, L., Zhang, J., Su, B., and Hu, M.Z. (2019). Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). J. Membr. Sci. 572: 520–531.10.1016/j.memsci.2018.11.005Search in Google Scholar

Li, G., Ye, J., Shen, Y., Fang, Q., and Liu, F. (2020). Covalent triazine frameworks composite membrane (CdS/CTF-1) with enhanced photocatalytic in-situ cleaning and disinfection properties for sustainable separation. Chem. Eng. J. 421: 127784.10.1016/j.cej.2020.127784Search in Google Scholar

Leusch, F.D.L., Neale, P.A., Arnal, C., Aneck-Hahn, N.H., Balaguer, P., Bruchet, A., Escher, B.I., Esperanza, M., Grimaldi, M., Leroy, G., Scheurer, M., Schlichting, R., Schriks, M., and Hebert, A. (2018). Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 139: 10–18.10.1016/j.watres.2018.03.056Search in Google Scholar PubMed

Li, R., Braekevelt, S., De Carfort, J.L.N., Hussain, S., Bollmann, U.E., and Bester, K. (2021). Laboratory and pilot evaluation of aquaporin-based forward osmosis membranes for rejection of micropollutants. Water Res. 194: 116924.10.1016/j.watres.2021.116924Search in Google Scholar PubMed

Li, R., Lou, Y., Xu, Y., Ma, G., Liao, B.Q., Shen, L., and Lin, H. (2019). Effects of surface morphology on alginate adhesion: molecular insights into membrane fouling based on XDLVO and DFT analysis. Chemosphere 233: 373–380.10.1016/j.chemosphere.2019.05.262Search in Google Scholar PubMed

Li, X., Wang, Q., Zhao, Y., Wu, W., Chen, J., and Meng, H. (2013). Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411: 69–75.10.1016/j.jcis.2013.08.050Search in Google Scholar PubMed

Li, X., Xu, Y., Goh, K., Chong, T.H., and Wang, R. (2020). Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal. J. Membr. Sci. 615: 118514.10.1016/j.memsci.2020.118514Search in Google Scholar

Li, Y., Zhang, X., Yang, A., Jiang, C., Zhang, G., and Mao, J. (2021). Polyphenol etched ZIF-8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules. J. Membr. Sci. 635: 119521.10.1016/j.memsci.2021.119521Search in Google Scholar

Licona, K.P.M., Geaquinto, L.R.D.O., Nicolini, J.V., Figueiredo, N.G., Chiapetta, S.C., Habert, A.C., and Yokoyama, L. (2018). Assessing potential of nano filtration and reverse osmosis for removal of toxic pharmaceuticals from water. J. Water Proc. Eng. 25: 195–204.10.1016/j.jwpe.2018.08.002Search in Google Scholar

Lin, L., Weigand, T.M., Farthing, M.W., Jutaporn, P., Miller, C.T., and Coronell, O. (2018). Relative importance of geometrical and intrinsic water transport properties of active layers in the water permeability of polyamide thin- film composite membranes. J. Membr. Sci. 564: 935–944.10.1016/j.memsci.2018.08.002Search in Google Scholar

Lin, Y.C., Wang, D.K., Liu, J.Y., Niaei, A., and Tseng, H.H. (2019). Low band-gap energy photocatalytic membrane based on SrTiO3–Cr and PVDF substrate: BSA protein degradation and separation application. J. Membr. Sci. 586: 326–337.10.1016/j.memsci.2019.05.067Search in Google Scholar

Lin, Y.L. (2017). Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J. Membr. Sci. 542: 342–351.10.1016/j.memsci.2017.08.023Search in Google Scholar

Liu, Q., Zhao, Z., Li, H., Su, M., and Liang, S. (2021). Occurrence and removal of organic pollutants by a combined analysis using GC-MS with spectral analysis and acute toxicity. Ecotoxicol. Environ. Saf. 207: 111237.10.1016/j.ecoenv.2020.111237Search in Google Scholar PubMed

Liu, Y., Wang, X., Yang, H., and Xie, Y.F. (2018). Quantifying the influence of solute-membrane interactions on adsorption and rejection of pharmaceuticals by NF/RO membranes. J. Membr. Sci. 551: 37–46.10.1016/j.memsci.2018.01.035Search in Google Scholar

Liu, Y., Wang, X., Yang, H., Xie, Y.F., and Huang, X. (2019). Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. J. Membr. Sci. 572: 152–160.10.1016/j.memsci.2018.11.013Search in Google Scholar

Liu, Y., Rosenfield, E., Hu, M., and Mi, B. (2013). Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles. Water Res. 47: 2949–2958.10.1016/j.watres.2013.03.005Search in Google Scholar PubMed

Lokare, O.R., Ji, P., Wadekar, S., Dutt, G., and Vidic, R.D. (2019). Concentration polarization in membrane distillation: I. Development of a laser-based spectrophotometric method for in-situ characterization. J. Membr. Sci. 581: 462–471.10.1016/j.memsci.2019.03.080Search in Google Scholar

Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474: 619–641.10.1016/j.scitotenv.2013.12.065Search in Google Scholar PubMed

Ma, L. and Yates, S.R. (2018). Degradation and metabolite formation of 17β-estradiol-3-glucuronide and 17β-estradiol-3-sulphate in river water and sediment. Water Res. 139: 1–9.10.1016/j.watres.2018.03.071Search in Google Scholar PubMed

Mahlangu, O.T. and Mamba, B.B. (2021). Interdependence of contributing factors governing dead-end fouling of nanofiltration membranes. Membranes 11: 1–20.10.3390/membranes11010047Search in Google Scholar PubMed PubMed Central

Mahlangu, O.T., Mamba, B.B., and Verliefde, A.R.D. (2020). Effect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranes. Polym. Adv. Technol. 31: 2588–2600.10.1002/pat.4986Search in Google Scholar

Mahlangu, O.T., Nackaerts, R., Mamba, B.B., and Verliefde, A.R.D. (2017a). Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater. Water Sci. Technol. 76: 501–514.10.2166/wst.2017.194Search in Google Scholar PubMed

Mahlangu, O.T., Nackaerts, R., Thwala, J.M., Mamba, B.B., and Verliefde, A.R.D. (2017b). Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation. J. Membr. Sci. 524: 43–55.10.1016/j.memsci.2016.11.018Search in Google Scholar

Mahlangu, T.O., Hoek, E.M.V., Mamba, B.B., and Verliefde, A.R.D. (2014a). Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: role of solute-foulant-membrane interactions and cake-enhanced concentration polarisation. J. Membr. Sci. 471: 35–46.10.1016/j.memsci.2014.07.065Search in Google Scholar

Mahlangu, T.O., Msagati, T.A.M., Hoek, E.M.V., Verliefde, A.R.D., and Mamba, B.B. (2014b). Rejection of pharmaceuticals by nanofiltration (NF) membranes: effect of fouling on rejection behaviour. Phys. Chem. Earth 76–78: 28–34.10.1016/j.pce.2014.11.008Search in Google Scholar

Mahlangu, T.O., Schoutteten, K.V.K.M., D’Haese, A., Van den Bussche, J., Vanhaecke, L., Thwala, J.M., Mamba, B.B., and Verliefde, A.R.D. (2016). Role of permeate flux and specific membrane-foulant-solute affinity interactions(∆Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. J. Membr. Sci. 518: 203–215.10.1016/j.memsci.2016.06.013Search in Google Scholar

Mahlangu, T.O., Thwala, J.M., Mamba, B.B., D’Haese, A., and Verliefde, A.R.D. (2015). Factors governing combined fouling by organic and colloidal foulants in cross-flow nanofiltration. J. Membr. Sci. 491: 53–62.10.1016/j.memsci.2015.03.021Search in Google Scholar

Mahmoudi, E., Ng, L.Y., Ang, W.L., Chung, Y.T., Rohani, R., and Mohammad, A.W. (2019). Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9: 1–16.10.1038/s41598-018-38060-xSearch in Google Scholar PubMed PubMed Central

Martí-Calatayud, M.C., Heßler, R., Schneider, S., Bohner, C., Yüce, S., Wessling, M., de Sena, R.F., and Athayde Júnior, G.B. (2020). Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes. Separ. Purif. Technol. 246: 116863.10.1016/j.seppur.2020.116863Search in Google Scholar

Maryam, B., Buscio, V., Odabasi, S.U., and Buyukgungor, H. (2020). A study on behavior, interaction and rejection of paracetamol, diclofenac and ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environ. Technol. Innovat. 18: 100641.10.1016/j.eti.2020.100641Search in Google Scholar

Mazur, L.P., Cechinel, M.A.P., de Souza, S.M.A.G.U., Boaventura, R.A.R., and Vilar, V.J.P. (2018). Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: a review. J. Environ. Manag. 223: 215–253.10.1016/j.jenvman.2018.05.086Search in Google Scholar PubMed

Predolin, L.M., Moya-Llamas, M.J., Vásquez-Rodríguez, E.D., Trapote Jaume, A., and Prats Rico, D. (2021). Effect of current density on the efficiency of a membrane electro-bioreactor for removal of micropollutants and phosphorus, and reduction of fouling: a pilot plant case study. J. Environ. Chem. Eng. 9: 104874.10.1016/j.jece.2020.104874Search in Google Scholar

Miao, R., Wang, L., Mi, N., Gao, Z., Liu, T., Lv, Y., Wang, X., Meng, X., and Yang, Y. (2015). Enhancement and mitigation mechanisms of protein fouling of ultrafiltration membranes under different ionic strengths. Environ. Sci. Technol. 49: 6574–6580.10.1021/es505830hSearch in Google Scholar PubMed

Miao, R., Wang, L., Zhu, M., Deng, D., Li, S., Wang, J., Liu, T., and Lv, Y. (2017). Effect of hydration forces on protein fouling of ultrafiltration membranes: the role of protein charge, hydrated ion species, and membrane hydrophilicity. Environ. Sci. Technol. 51: 167–174.10.1021/acs.est.6b03660Search in Google Scholar PubMed

Miron, S.M., Dutournié, P., and Ponche, A. (2019). Filtration of uncharged solutes: an assessment of steric effect by transport and adsorption modelling. Water (Switzerland) 11: 2173.10.3390/w11102173Search in Google Scholar

Mohamed, E.S., Papadakis, G., Mathioulakis, E., and Belessiotis, V. (2005). The effect of hydraulic energy recovery in a small sea water reverse osmosis desalination system; experimental and economical evaluation. Desalination 184: 241–246.10.1016/j.desal.2005.02.066Search in Google Scholar

Monteoliva-García, A., Martín-Pascual, J., Muñío, M.M., and Poyatos, J.M. (2020). Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor – advanced oxidation process combined treatment. Sci. Total Environ. 708: 135104.10.1016/j.scitotenv.2019.135104Search in Google Scholar PubMed

Motsa, M.M., Mamba, B.B., D’Haese, A., Hoek, E.M.V., Verliefde, A.R.D., D’Haese, A., Hoek, E.M.V., and Verliefde, A.R.D. (2014). Organic fouling in forward osmosis membranes: the role of feed solution chemistry and membrane structural properties. J. Membr. Sci. 460: 99–109.10.1016/j.memsci.2014.02.035Search in Google Scholar

Motsa, M.M., Mamba, B.B., and Verliefde, A.R.D. (2018). Forward osmosis membrane performance during simulated wastewater reclamation: fouling mechanisms and fouling layer properties. J. Water Proc. Eng. 23: 109–118.10.1016/j.jwpe.2018.03.007Search in Google Scholar

Musbah, I., Cicéron, D., Saboni, A., and Alexandrova, S. (2013). Retention of pesticides and metabolites by nano filtration by effects of size and dipole moment. Desalination 313: 51–56.10.1016/j.desal.2012.11.016Search in Google Scholar

Modin, O., Persson, F., and Britt-Marie Wilén, M.H. (2016). Nonoxidative removal of organics in the activated sludge process. Crit. Rev. Environ. Sci. Technol. 46: 635–672.10.1080/10643389.2016.1149903Search in Google Scholar PubMed PubMed Central

Nakagawa, K., Araya, S., Ushio, K., Kunimatsu, M., Yoshioka, T., Shintani, T., Kamio, E., Tung, K., and Matsuyama, H. (2021). Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Separ. Purif. Technol. 276: 119279.10.1016/j.seppur.2021.119279Search in Google Scholar

Nayak, J.K. and Ghosh, U.K. (2019). Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production. Biomass Bioenergy 131: 105415.10.1016/j.biombioe.2019.105415Search in Google Scholar

Nghiem, L.D. and Hawkes, S. (2007). Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Separ. Purif. Technol. 57: 176–184.10.1016/j.seppur.2007.04.002Search in Google Scholar

Nghiem, L.D., Schäfer, A.I., and Elimelech, M. (2005). Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 39: 7698–7705.10.1021/es0507665Search in Google Scholar PubMed

Nghiem, L.D., Schäfer, A.I., and Elimelech, M. (2006). Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 286: 52–59.10.1016/j.memsci.2006.09.011Search in Google Scholar

Nyström, M., Kaipia, L., and Luque, S. (1995). Fouling and retention of nanofiltration membranes. J. Membr. Sci. 98: 249–262.10.1016/0376-7388(94)00196-6Search in Google Scholar

Oh, Y., Armstrong, D.L., Finnerty, C., Zheng, S., Hu, M., and Torrents, A. (2017). Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. J. Membr. Sci. 541: 235–243.10.1016/j.memsci.2017.07.005Search in Google Scholar

Ojajuni, O., Saroj, D., and Cavalli, G. (2015). Removal of organic micropollutants using membrane-assisted processes: a review of recent progress. Environ. Technol. Rev. 4: 17–37.10.1080/21622515.2015.1036788Search in Google Scholar

Omar, T.F.T., Aris, A.Z., Yusoff, F.M., and Mustafa, S. (2018). Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Mar. Pollut. Bull. 131: 284–293.10.1016/j.marpolbul.2018.04.019Search in Google Scholar PubMed

Oulad, F., Zinadini, S., Akbar, A., and Ashraf, A. (2020). Preparation and characterization of loose antifouling nano filtration membrane using branched aniline oligomers grafted onto polyether sulfone and application for real algal dye removal. Chem. Eng. J. 401: 125861.10.1016/j.cej.2020.125861Search in Google Scholar

Van Oss, C., Chaudhury, M., and Good, R. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88: 927–941.10.1021/cr00088a006Search in Google Scholar

Paul, D. (2004). Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 241: 371–386.10.1016/j.memsci.2004.05.026Search in Google Scholar

Qi, K., Chen, M., Dai, R., Li, Q., Lai, M., and Wang, Z. (2020). Development of an electrochemical ceramic membrane bioreactor for the removal of PPCPs from wastewater. Water 12: 1838.10.3390/w12061838Search in Google Scholar

Qian, Y., Zhang, X., Liu, C., Zhou, C., and Huang, A. (2019). Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance. Desalination 460: 56–63.10.1016/j.desal.2019.03.009Search in Google Scholar

Qu, F., Wang, H., He, J., Fan, G., Pan, Z., Tian, J., Rong, H., Li, G., and Yu, H. (2019). Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals. Environ. Sci. Water Res. Technol. 5: 672–683.10.1039/C9EW00022DSearch in Google Scholar

Radjenović, J., Petrović, M., Ventura, F., and Barceló, D. (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42: 3601–3610.10.1016/j.watres.2008.05.020Search in Google Scholar PubMed

Ramlow, H., Machado, R.A.F., and Marangoni, C. (2017). Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Sci. Technol. 76: 2565–2579.10.2166/wst.2017.449Search in Google Scholar PubMed

Ribeiro, A.R., Santos, L.H.M.L.M., Maia, A.S., Delerue-Matos, C., Castro, P.M.L., and Tiritan, M.E. (2014). Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1363: 226–235.10.1016/j.chroma.2014.06.099Search in Google Scholar PubMed

Rivera-Jaimes, J.A., Postigo, C., Melgoza-Alemán, R.M., Aceña, J., Barceló, D., López, M., and Alda, D. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 613-614: 1263–1274.10.1016/j.scitotenv.2017.09.134Search in Google Scholar PubMed

Rosman, N., Norharyati Wan Salleh, W., Aqilah Mohd Razali, N., Nurain Ahmad, S.Z., Hafiza Ismail, N., Aziz, F., Harun, Z., Fauzi Ismail, A., and Yusof, N. (2020). Ibuprofen removal through photocatalytic filtration using antifouling PVDF- ZnO/Ag2CO3/Ag2O nanocomposite membrane. Mater. Today Proc. 2–7.10.1016/j.matpr.2020.09.476Search in Google Scholar

Rowland, S.J., Galloway, T.S., and Thompson, R.C. (2007). Potential for plastics to transport hydrophobic contaminants. Environ. Sci. Technol. 41: 7759–7764.10.1021/es071737sSearch in Google Scholar PubMed

Sahar, E., Messalem, R., Cikurel, H., Aharoni, A., Brenner, A., Godehardt, M., Jekel, M., and Ernst, M. (2011). Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res. 45: 4827–4836.10.1016/j.watres.2011.06.023Search in Google Scholar PubMed

Saleem, H. and Zaidi, S.J. (2020). Nanoparticles in reverse osmosis membranes for desalination: a state of the art review. Desalination 475: 114171.10.1016/j.desal.2019.114171Search in Google Scholar

Santos, J.L.C., de Beukelaar, P., Vankelecom, I.F.J., Velizarov, S., and Crespo, J.G. (2006). Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration. Separ. Purif. Technol. 50: 122–131.10.1016/j.seppur.2005.11.015Search in Google Scholar

Sauchelli, M., Pellegrino, G., D’Haese, A., Rodríguez-Roda, I., and Gernjak, W. (2018). Transport of trace organic compounds through novel forward osmosis membranes: role of membrane properties and the draw solution. Water Res. 141: 65–73.10.1016/j.watres.2018.05.003Search in Google Scholar PubMed

Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J.B., Knepper, T.P., Reemtsma, T., and Berger, U. (2019). Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 153: 80–90.10.1016/j.watres.2019.01.008Search in Google Scholar PubMed

Schwegmann, H., Ruppert, J., and Frimmel, F.H. (2012). Influence of the pH-value on the photocatalytic disinfection of bacteria with TiO2-Explanation by DLVO and XDLVO theory. Water Res. 47: 1503–1511.10.1016/j.watres.2012.11.030Search in Google Scholar PubMed

Semerjian, L., Shanableh, A., Semreen, M.H., and Samarai, M. (2018). Human health risk assessment of pharmaceuticals in treated wastewater reused for non-potable applications in Sharjah, United Arab Emirates. Environ. Int. 121: 325–331.10.1016/j.envint.2018.08.048Search in Google Scholar PubMed

Shah, A.A., Park, A., Yoo, Y., Nam, S.E., Park, Y.I., Cho, Y.H., and Park, H. (2021). Preparation of highly permeable nanofiltration membranes with interfacially polymerized biomonomers. J. Membr. Sci. 627: 119209.10.1016/j.memsci.2021.119209Search in Google Scholar

Sharma, R.R., Agrawal, R., and Chellam, S. (2003). Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J. Membr. Sci. 223: 69–87.10.1016/S0376-7388(03)00310-7Search in Google Scholar

Sharma, R.R. and Chellam, S. (2005). Temperature effects on the morphology of porous thin film composite nanofiltration membranes. Environ. Sci. Technol. 39: 5022–5030.10.1021/es0501363Search in Google Scholar PubMed

Shirley, J., Mandale, S., and Kochkodan, V. (2014). Influence of solute concentration and dipole moment on the retention of uncharged molecules with nanofiltration. Desalination 344: 116–122.10.1016/j.desal.2014.03.024Search in Google Scholar

Silva, T.L.S., Morales-Torres, S., Esteves, C.M.P., Ribeiro, A.R., Nunes, O.C., Figueiredo, J.L., and Silva, A.M.T. (2018). Desalination and removal of organic micropollutants and microorganisms by membrane distillation. Desalination 437: 121–132.10.1016/j.desal.2018.02.027Search in Google Scholar

Simazaki, D., Kubota, R., Suzuki, T., and Akiba, M. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 76: 187–200.10.1016/j.watres.2015.02.059Search in Google Scholar PubMed

Song, H.L., Lu, Y.X., Yang, X.L., Xu, H., Singh, R.P., Du, K.X., and Yang, Y.L. (2020). Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor. Bioresour. Technol. 305: 123029.10.1016/j.biortech.2020.123029Search in Google Scholar PubMed

Song, P., Yang, Z., Zeng, G., Yang, X., Xu, H., Wang, L., Xu, R., Xiong, W., and Ahmad, K. (2017). Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review. Chem. Eng. J. 317: 707–725.10.1016/j.cej.2017.02.086Search in Google Scholar

Stanley, C. and Rau, D.C. (2011). Evidence for water structuring forces between surfaces. Curr. Opin. Colloid Interface Sci. 16: 551–556.10.1016/j.cocis.2011.04.010Search in Google Scholar PubMed PubMed Central

Stevens-Garmon, J., Drewes, J.E., Khan, S.J., McDonald, J.A., and Dickenson, E.R.V. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Res. 45: 3417–3426.10.1016/j.watres.2011.03.056Search in Google Scholar PubMed

Straub, A.P., Asa, E., Zhang, W., Nguyen, T.H., and Herzberg, M. (2020). In-situ graft-polymerization modi fi cation of commercial ultra filtration membranes for long-term fouling resistance in a pilot-scale membrane bioreactor. Chem. Eng. J. 382: 122865.10.1016/j.cej.2019.122865Search in Google Scholar

Sui, Q., Huang, J., Deng, S., Yu, G., and Fan, Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 44: 417–426.10.1016/j.watres.2009.07.010Search in Google Scholar PubMed

Sumpter, J.P. and Johnson, A.C. (2005). Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ. Sci. Technol. 39: 4321–4332.10.1021/es048504aSearch in Google Scholar PubMed

Sun, H., Zhu, D., Shi, P., Ji, W., Cao, X., Cheng, S., Lou, Y., and Li, A. (2022). Sustainable treatment and resource recovery of anion exchange spent brine by pilot-scale electrodialysis and ultrafiltration. Membranes 12: 273.10.3390/membranes12030273Search in Google Scholar PubMed PubMed Central

Urase, T., Kagawa, C., and Kikuta, T. (2005). Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination 178: 107–113.10.1016/j.desal.2004.11.031Search in Google Scholar

Van der Bruggen, B., Schaep, J., Maes, W., Wilms, D., and Vandecasteele, C. (1999a). Nanofiltration as a treatment method for the removal of pesticides from ground waters. Water Supply 17: 55–63.Search in Google Scholar

Van der Bruggen, B., Schaep, J., Wilms, D., and Vandecasteele, C. (1999b). Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 156: 29–41.10.1016/S0376-7388(98)00326-3Search in Google Scholar

Van der Bruggen, B., Verliefde, A., Braeken, L., Cornelissen, E.R., Moons, K., Verberk, J.Q.J.C., van Dijk, H.J.C., and Amy, G. (2006). Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration. J. Chem. Technol. Biotechnol. 81: 1166–1176.10.1002/jctb.1489Search in Google Scholar

Verliefde, A.R.D. (2008). Rejection of organic micropollutants by high pressure membranes (NF/RO). Water Management Academic Press, 2600 GA Delft, The Netherlands.Search in Google Scholar

Valdes, M.E., Ame, M.V., de Los Angeles Bistoni, M., and Wundelin, A. (2014). Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Sci. Total Environ. 472: 389–396.10.1016/j.scitotenv.2013.10.124Search in Google Scholar PubMed

Vasanthapalaniappan, K., Palani, K., Saravanabhavan, S.S., Jonna, N., Pounsamy, M., Natarajan, K., Huh, Y.S., and Natesan, B. (2021). A study on novel coupled membrane bioreactor with electro oxidation for biofouling reduction. Environ. Eng. Res. 26: 200039.10.4491/eer.2020.039Search in Google Scholar

Vazquez-Roig, P., Kasprzyk-Hordern, B., Blasco, C., and Picó, Y. (2014). Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain). Sci. Total Environ. 494-495: 49–57.10.1016/j.scitotenv.2014.06.098Search in Google Scholar PubMed

Vergili, I. (2013). Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 127: 177–187.10.1016/j.jenvman.2013.04.036Search in Google Scholar PubMed

Verliefde, A., van Vliet, N., van der Bruggen, B., and van Dijk, J.C. (2006). A semi-quantitative method for prediction of the rejection of uncharged organic micropollutants with nanofiltration. Water Pract. Technol. 1: 2006084.10.2166/wpt.2006.084Search in Google Scholar

Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Hoek, M.V., Amy, G.L., Van der Bruggen, B, and Van Dijk, J.C. (2009a). Influence of solute - membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Environ. Sci. Technol. 43: 2400–2406.10.1021/es803146rSearch in Google Scholar PubMed

Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Petrinic, I., Luxbacher, T., Amy, G.L., Van der Bruggen, B., and van Dijk, J.C. (2009b). Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. J. Membr. Sci. 330: 90–103.10.1016/j.memsci.2008.12.039Search in Google Scholar

Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Verberk, J.Q.J.C., Amy, G.L., Van der Bruggen, B., and van Dijk, J.C. (2008a). The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 322: 52–66.10.1016/j.memsci.2008.05.022Search in Google Scholar

Verliefde, A.R.D., Heijman, S.G.J., Cornelissen, E.R., Amy, G., Van der Bruggen, B., and van Dijk, J.C. (2007). Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 41: 3227–3240.10.1016/j.watres.2007.05.022Search in Google Scholar PubMed

Verliefde, A.R.D., Heijman, S.G.J., Cornelissen, E.R., Amy, G.L., Van der Bruggen, B., and van Dijk, J.C. (2008b). Rejection of trace organic pollutants with high pressure membranes (NF/RO). Environ. Prog. 27: 180–188.10.1002/ep.10272Search in Google Scholar

Verliefde, A.R.D., Van der Meeren, P., and Van der Bruggen, B. (2013). Solution-diffusion processes in membrane. In: Hoek, E.M.V., and Tarabara, V.V. (Eds.). Encyclopedia of membrane science and technology. Wiley and sons, Hoboken, New York.10.1002/9781118522318.emst017Search in Google Scholar

Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Freger, V., Verliefde, A.R.D., and Hoek, E.M.V. (2014). A critical review of transport through osmotic membranes. J. Membr. Sci. 454: 516–537.10.1016/j.memsci.2013.12.034Search in Google Scholar

Wang, K.Y., Teoh, M.M., Nugroho, A., and Chung, T.S. (2011). Integrated forward osmosis-membrane distillation (FO-MD) hybrid system for the concentration of protein solutions. Chem. Eng. Sci. 66: 2421–2430.10.1016/j.ces.2011.03.001Search in Google Scholar

Wang, Q., Tang, X., Zeng, W., Wang, F., Gong, W., Chen, J., Wang, J., Li, G., and Liang, H. (2022). Pilot-scale biological activated carbon filtration–ultrafiltration system for removing pharmaceutical and personal care products from river water. Water (Switzerland) 14: 367.10.3390/w14030367Search in Google Scholar

Wang, X., Li, B., Zhang, T., and Li, X. (2015). Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction. Desalination 370: 7–16.10.1016/j.desal.2015.05.010Search in Google Scholar

Wang, Y., Wang, X., Zhou, A., Li, J., Tian, L., Zhang, M., Sun, W., and Ding, L. (2021). A modified membrane filtration-ultraviolet photocatalytic system for the removal of trace sulfadiazine in drinking water (No. CHEM77354R1). Chemosphere 272: 129867.10.1016/j.chemosphere.2021.129867Search in Google Scholar PubMed

Wei, K., Cui, T., Huang, F., Zhang, Y., and Han, W. (2020). Membrane separation coupled with electrochemical advanced oxidation processes for organic wastewater treatment: a short review. Membranes 10: 337.10.3390/membranes10110337Search in Google Scholar PubMed PubMed Central

Wen, Y., Chen, Y., Wu, Z., Liu, M., and Wang, Z. (2019). Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J. Membr. Sci. 582: 289–297.10.1016/j.memsci.2019.04.016Search in Google Scholar

Wijmans, J.G. and Baker, R.W. (1995). The solution-diffusion model: a review. J. Membr. Sci. 107: 1–21.10.1016/0376-7388(95)00102-ISearch in Google Scholar

Wolters, J., Tagliavini, M., and Schäfer, A.I. (2019). Removal of steroid hormone micropollutants by UF-PBSAC composite in presence of organic matter. J. Membr. Sci. 592: 117315.10.1016/j.memsci.2019.117315Search in Google Scholar

Wu, Y., Kang, Y., Zhang, L., Qu, D., Cheng, X., and Feng, L. (2018). Performance and fouling mechanism of direct contact membrane distillation (DCMD) treating fermentation wastewater with high organic concentrations. J. Environ. Sci. (China) 65: 253–261.10.1016/j.jes.2017.01.015Search in Google Scholar PubMed

Xie, M., Luo, W., Guo, H., Nghiem, L.D., Tang, C.Y., and Gray, S.R. (2018). Trace organic contaminant rejection by aquaporin forward osmosis membrane: transport mechanisms and membrane stability. Water Res. 132: 90–98.10.1016/j.watres.2017.12.072Search in Google Scholar PubMed

Xie, M., Price, W.E., and Nghiem, L.D. (2012). Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation. Separ. Purif. Technol. 93: 107–114.10.1016/j.seppur.2012.03.030Search in Google Scholar

Xu, H., Li, Y., Ding, M., Chen, W., Wang, K., and Lu, C. (2018). Simultaneous removal of dissolved organic matter and nitrate from sewage treatment plant effluents using photocatalytic membranes. Water Res. 143: 250–259.10.1016/j.watres.2018.06.044Search in Google Scholar PubMed

Xu, R., Zhou, M., Wang, H., Wang, X., and Wen, X. (2020). Influences of temperature on the retention of PPCPs by nanofiltration membranes: experiments and modeling assessment. J. Membr. Sci. 599: 117817.10.1016/j.memsci.2020.117817Search in Google Scholar

Xu, Y. and Lebrun, R.E. (1999). Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type. J. Membr. Sci. 158: 93–104.10.1016/S0376-7388(99)00005-8Search in Google Scholar

Xu, Z., Song, X., Xie, M., Wang, Y., Huda, N., Li, G., and Luo, W. (2021). Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. J. Membr. Sci. 618: 118634.10.1016/j.memsci.2020.118634Search in Google Scholar

Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., Hirata, Y., Hayashi, A., and Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res. 43: 351–362.10.1016/j.watres.2008.10.039Search in Google Scholar PubMed

Yangali-Quintanilla, V., Sadmani, A, McConville, M., Kennedy, M., and Amy, G. (2009). Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Res. 43: 2349–2362.10.1016/j.watres.2009.02.027Search in Google Scholar PubMed

Yoon, Y. and Lueptow, R. (2005). Removal of organic contaminants by RO and NF membranes. J. Membr. Sci. 261: 76–86.10.1016/j.memsci.2005.03.038Search in Google Scholar PubMed

Yoon, R-H., and Ravishankar, S.A. (1994). Application of extended DLVO theory III. Effect of octanol on the long-range hydrophobic forces between dodecylamine-coated mica surfaces. J. Colloid Interface Sci. 166: 215–224.10.1006/jcis.1994.1287Search in Google Scholar

Zazouli, M.A., Susanto, H., Nasseri, S., and Ulbricht, M. (2009). Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration. Water Res. 43: 3270–3280.10.1016/j.watres.2009.04.038Search in Google Scholar PubMed

Zhang, H., He, Q., Luo, J., Wan, Y., and Darling, S.B. (2020). Sharpening nanofiltration: strategies for enhanced membrane selectivity. ACS Appl. Mater. Interfaces 12: 39948–39966.10.1021/acsami.0c11136Search in Google Scholar PubMed

Zhang, J., Satti, A., Chen, X., Xiao, K., Sun, J., Yan, X., Liang, P., Zhang, X., and Huang, X. (2015). Low-voltage electric field applied into MBR for fouling suppression: performance and mechanisms. Chem. Eng. J. 273: 223–230.10.1016/j.cej.2015.03.044Search in Google Scholar

Zhang, L., Shan, C., Jiang, X., Li, X., and Yu, L. (2018). High hydrophilic antifouling membrane modified with capsaicin-mimic moieties via microwave assistance (MWA) for efficient water purification. Chem. Eng. J. 338: 688–699.10.1016/j.cej.2018.01.053Search in Google Scholar

Zhang, M., Zhang, K., De Gusseme, B., and Verstraete, W. (2012). Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 46: 2077–2087.10.1016/j.watres.2012.01.015Search in Google Scholar PubMed

Zhang, S., Ly, Q.V., Nghiem, L.D., Wang, J., Li, J., and Hu, Y. (2020). Optimization and organic fouling behavior of zwitterion-modified thin-film composite polyamide membrane for water reclamation: a comprehensive study. J. Membr. Sci. 596: 117748.10.1016/j.memsci.2019.117748Search in Google Scholar

Zhang, W., Cheng, W., Ziemann, E., Be, A., Lu, X., Elimelech, M., and Bernstein, R. (2018). Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J. Membr. Sci. 565: 293–302.10.1016/j.memsci.2018.08.017Search in Google Scholar

Zhang, X., Li, H., Wang, J., Peng, D., Liu, J., and Zhang, Y. (2019). In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J. Membr. Sci. 581: 321–330.10.1016/j.memsci.2019.03.070Search in Google Scholar

Zhang, X., Lv, Y., Yang, H., Du, Y., and Xu, Z. (2016). Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nano filtration performance. ACS Appl. Mater. Interfaces 8: 32512–32519.10.1021/acsami.6b10693Search in Google Scholar PubMed

Zhang, Y., Van der Bruggen, B., Chen, G.X., Braeken, L., and Vandecasteele, C. (2004). Removal of pesticides by nanofiltration: effect of the water matrix. Separ. Purif. Technol. 38: 163–172.10.1016/j.seppur.2003.11.003Search in Google Scholar

Zhao, C., Yang, B., Han, J., Meng, Y., Yu, L., and Hou, D. (2018). Preparation of carboxylic multiwalled-carbon-nanotube – modified poly (m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal. Appl. Surf. Sci. 453: 502–512.10.1016/j.apsusc.2018.05.149Search in Google Scholar

Zhao, J., Yang, Y., Jiang, J., Takizawa, S., and Hou, L. (2021). Influences of cross-linking agents with different MW on the structure of GO/CNTs layers, membrane performances and fouling mechanisms for dissolved organic matter. J. Membr. Sci. 617: 118616.10.1016/j.memsci.2020.118616Search in Google Scholar

Zhao, L., Wang, F., Weng, X., Li, R., Zhou, X., Lin, H., Yu, H., and Liao, B.Q. (2017). Novel indicators for thermodynamic prediction of interfacial interactions related with adhesive fouling in a membrane bioreactor. J. Colloid Interface Sci. 487: 320–329.10.1016/j.jcis.2016.10.059Search in Google Scholar PubMed

Zhao, Y., Kong, F., Wang, Z., Yang, H., Wang, X., Xie, Y.F., and Waite, T.D. (2017). Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes. Front. Environ. Sci. Eng. 11.10.1007/s11783-017-0975-xSearch in Google Scholar

Zhao, Y., Wang, X., Yang, H., and Xie, Y.F. (2018). Effects of organic fouling and cleaning on the retention of pharmaceutically active compounds by ceramic nanofiltration membranes. J. Membr. Sci. 563: 734–742.10.1016/j.memsci.2018.06.047Search in Google Scholar

Zheng, F., Li, C., Yuan, Q., and Vriesekoop, F. (2008). Influence of molecular shape on the retention of small molecules by solvent resistant nanofiltration ( SRNF) membranes: a suitable molecular size parameter. J. Membr. Sci. 318: 114–122.10.1016/j.memsci.2008.02.046Search in Google Scholar

Zheng, L., Price, W.E., McDonald, J., Khan, S.J., Fujioka, T., and Nghiem, L.D. (2019). New insights into the relationship between draw solution chemistry and trace organic rejection by forward osmosis. J. Membr. Sci. 587: 117184.10.1016/j.memsci.2019.117184Search in Google Scholar

Received: 2021-06-10
Accepted: 2022-03-27
Published Online: 2022-05-23
Published in Print: 2023-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0046/html
Scroll to top button