1932

Abstract

Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in and has since been demonstrated in numerous species, including and . Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including spp., , and spp. In this review, we collate current knowledge of the phenomenon of natural transformation in Gram-positive bacteria. Furthermore, we describe the mechanism of competence development and its regulation in model bacterial species. We highlight the importance and opportunities for the application of these findings in the context of bacterial starter cultures associated with food fermentations as well as current limitations in this area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-011445
2022-03-25
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-011445.html?itemId=/content/journals/10.1146/annurev-food-052720-011445&mimeType=html&fmt=ahah

Literature Cited

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–10
    [Google Scholar]
  2. Attaiech L, Olivier A, Mortier-Barrière I, Soulet A-L, Granadel C et al. 2011. Role of the single-stranded DNA-binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLOS Genet. 7:e1002156
    [Google Scholar]
  3. Bachmann H, De Wilt L, Kleerebezem M, Van Hylckama Vlieg JET 2010. Time-resolved genetic responses of Lactococcus lactis to a dairy environment. Environ. Microbiol. 12:1260–70
    [Google Scholar]
  4. Bergé M, Moscoso M, Prudhomme M, Martin B, Claverys J-P 2002. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45:411–21
    [Google Scholar]
  5. Biørnstad TJ, Håvarstein LS. 2011. ClpC acts as a negative regulator of competence in Streptococcus thermophilus. Microbiology 157:1676–84
    [Google Scholar]
  6. Blokesch M. 2016. Natural competence for transformation. Curr. Biol. 26:R1126–30
    [Google Scholar]
  7. Boonstra M, Schaffer M, Sousa J, Morawska L, Holsappel S et al. 2020. Analyses of competent and non-competent subpopulations of Bacillus subtilis reveal yhfW, yhxC and ncRNAs as novel players in competence. Environ. Microbiol. 22:62312–28
    [Google Scholar]
  8. Boto L. 2010. Horizontal gene transfer in evolution: facts and challenges. Proc. R. Soc. B 277:819–27
    [Google Scholar]
  9. Boutry C, Wahl A, Delplace B, Clippe A, Fontaine L, Hols P. 2012. Adaptor protein MecA is a negative regulator of the expression of late competence genes in Streptococcus thermophilus. J. Bacteriol. 194:1777–88
    [Google Scholar]
  10. Bron PA, Marcelli B, Mulder J, van der Els S, Morawska LP et al. 2019. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr. Opin. Biotechnol. 56:61–68
    [Google Scholar]
  11. Carvalho G, Fouchet D, Danesh G, Godeux A-S, Laaberki M-H et al. 2020. Bacterial transformation buffers environmental fluctuations through the reversible integration of mobile genetic elements. mBio 11:e02443–19
    [Google Scholar]
  12. Chastanet A, Prudhomme M, Claverys JP, Msadek T. 2001. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J. Bacteriol. 183:7295–307
    [Google Scholar]
  13. Chen I, Gotschlich EC 2001. ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J. Bacteriol. 183:3160–68
    [Google Scholar]
  14. Chen I, Provvedi R, Dubnau D 2006. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J. Biol. Chem. 281:21720–27
    [Google Scholar]
  15. Claverys JP, Martin B, Havarstein LS 2007. Competence-induced fratricide in streptococci. Mol. Microbiol. 64:1423–33
    [Google Scholar]
  16. Claverys JP, Prudhomme M, Martin B 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu. Rev. Microbiol. 60:451–75
    [Google Scholar]
  17. David B, Radziejwoski A, Toussaint F, Fontaine L, de Frahan MH et al. 2017. Natural DNA transformation is functional in Lactococcus lactis subsp. cremoris KW2. Appl. Environ. Microbiol. 83:e01074–17
    [Google Scholar]
  18. Davison J, Ammann K. 2017. New GMO regulations for old: determining a new future for EU crop biotechnology. GM Crops Food 8:13–34
    [Google Scholar]
  19. den Hengst CD, Groeneveld M, Kuipers OP, Kok J. 2006. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA). J. Bacteriol. 188:3280–89
    [Google Scholar]
  20. Desai K, Mashburn-Warren L, Federle MJ, Morrison DA. 2012. Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J. Bacteriol. 194:3774–80
    [Google Scholar]
  21. Dong G, Tian X-L, Gomez ZA, Li Y-H. 2014. Regulated proteolysis of the alternative sigma factor SigX in Streptococcus mutans: implication in the escape from competence. BMC Microbiol 14:183
    [Google Scholar]
  22. Dubnau D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55:395–424
    [Google Scholar]
  23. Dubnau D 1993. Genetic exchange and homologous recombination. Bacillus subtilis and other Gram-Positive Bacteria AL Sonenshein, JA Hoch, R Losick 555–84 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  24. Dubnau D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217–44
    [Google Scholar]
  25. Dubnau D, Blokesch M. 2019. Mechanisms of DNA uptake by naturally competent bacteria. Annu. Rev. Genet. 53:217–37
    [Google Scholar]
  26. Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–84
    [Google Scholar]
  27. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C et al. 2010. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J. Bacteriol. 192:1444–54
    [Google Scholar]
  28. Fontaine L, Goffin P, Dubout H, Delplace B, Baulard A et al. 2013. Mechanism of competence activation by the ComRS signalling system in streptococci. Mol. Microbiol. 87:1113–32
    [Google Scholar]
  29. Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. 2015. Regulation of competence for natural transformation in streptococci. Infect. Genet. Evol. 33:343–60
    [Google Scholar]
  30. Gardan R, Besset C, Gitton C, Guillot A, Fontaine L et al. 2013. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J. Bacteriol. 195:1845–55
    [Google Scholar]
  31. Gardan R, Besset C, Guillot A, Gitton C, Monnet V. 2009. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol. 191:4647–55
    [Google Scholar]
  32. Geisen R, Holzapfel WH. 1996. Genetically modified starter and protective cultures. Int. J. Food Microbiol. 30:315–24
    [Google Scholar]
  33. Hagen SJ. 2017. The Physical Microbe: An Introduction to Noise, Control and Communication in the Prokaryotic Cell San Rafael, CA: Morgan Claypool
    [Google Scholar]
  34. Hahn J, Maier B, Haijema BJ, Sheetz M, Dubnau D. 2005. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell 122:59–71
    [Google Scholar]
  35. Haijema BJ, Hamoen LW, Kooistra J, Venema G, van Sinderen D. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol. Microbiol. 15:203–11
    [Google Scholar]
  36. Hamoen LW, Venema G, Kuipers OP. 2003. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17
    [Google Scholar]
  37. Harlander SK. 1992. Applications of Biotechnology to Fermented Foods: Report of an Ad Hoc Panel of the Board on Science and Technology for International Development Washington, DC: Natl. Acad. Press
    [Google Scholar]
  38. Haustenne L, Bastin G, Hols P, Fontaine L. 2015. Modeling of the ComRS signaling pathway reveals the limiting factors controlling competence in Streptococcus thermophilus. Front. Microbiol. 6:1413
    [Google Scholar]
  39. Hendrickson HL, Barbeau D, Ceschin R, Lawrence JG 2018. Chromosome architecture constrains horizontal gene transfer in bacteria. PLOS Genet. 14:5e1007421
    [Google Scholar]
  40. Hiom K. 2012. Homologous recombination: how RecA finds the perfect partner. Curr. Biol. 22:R275–78
    [Google Scholar]
  41. Inniss NL, Prehna G, Morrison DA. 2019. The pneumococcal sigma(X) activator, ComW, is a DNA-binding protein critical for natural transformation. J. Biol. Chem. 294:11101–18
    [Google Scholar]
  42. Johnston C, Mortier-Barriere I, Khemici V, Polard P 2018. Fine-tuning cellular levels of DprA ensures transformant fitness in the human pathogen Streptococcus pneumoniae. Mol. Microbiol. 109:663–75
    [Google Scholar]
  43. Kahn ME, Barany F, Smith HO. 1983. Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. PNAS 80:6927–31
    [Google Scholar]
  44. Kaspar JR, Walker AR 2019. Expanding the vocabulary of peptide signals in Streptococcus mutans. Front. Cell. Infect. Microbiol. 9:194
    [Google Scholar]
  45. Kazmierczak MJ, Wiedmann M, Boor KJ 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69:527–43
    [Google Scholar]
  46. Kelleher P, Bottacini F, Mahony J, Kilcawley KN, van Sinderen D. 2017. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genom. 18:267
    [Google Scholar]
  47. Khan R, Junges R, Åmdal HA, Chen T, Morrison DA, Petersen FC 2017. A positive feedback loop mediated by Sigma X enhances expression of the streptococcal regulator ComR. Sci. Rep. 7:5984
    [Google Scholar]
  48. Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S et al. 2009. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLOS Genet 5:e1000630
    [Google Scholar]
  49. Kuzminov A. 2011. Homologous recombination—experimental systems, analysis, and significance. EcoSal Plus 4. https://doi.org/10.1128/ecosalplus.7.2.6
    [Crossref] [Google Scholar]
  50. Labrie SJ, Mosterd C, Loignon S, Dupuis M-È, Desjardins P et al. 2019. A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Sci. Rep. 9:13816
    [Google Scholar]
  51. Lahitinen S, Ouwehand AU, Salminen S, von Wright A 2011. Lactic Acid Bacteria: Microbiological and Functional Aspects Boca Raton, FL: CRC Press798 pp.
    [Google Scholar]
  52. Lam T, Brennan MD, Morrison DA, Eddington DT. 2019. Femtoliter droplet confinement of Streptococcus pneumoniae: bacterial genetic transformation by cell-cell interaction in droplets. Lab Chip 19:682–92
    [Google Scholar]
  53. Laurenceau R, Krasteva PV, Diallo A, Ouarti S, Duchateau M et al. 2015. Conserved Streptococcus pneumoniae spirosomes suggest a single type of transformation pilus in competence. PLOS Pathog. 11:e1004835
    [Google Scholar]
  54. Laurenceau R, Péhau-Arnaudet G, Baconnais S, Gault J, Malosse C et al. 2013. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLOS Pathog 9:e1003473
    [Google Scholar]
  55. Le S, Serrano E, Kawamura R, Carrasco B, Yan J, Alonso JC 2017. Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation. Nucleic Acids Res 45:8873–85
    [Google Scholar]
  56. Lecomte X, Gagnaire V, Briard-Bion V, Jardin J, Lortal S et al. 2014. The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microb. Cell Fact. 13:82
    [Google Scholar]
  57. Letort C, Juillard V. 2001. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol. 91:1023–29
    [Google Scholar]
  58. Leung V, Dufour D, Lévesque CM. 2015. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide. Front. Microbiol. 6:1176
    [Google Scholar]
  59. Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F et al. 2010. Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 21:425–35
    [Google Scholar]
  60. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE et al. 2011. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Environ. Microbiol. 77:2232–38
    [Google Scholar]
  61. Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602
    [Google Scholar]
  62. Maier B, Chen I, Dubnau D, Sheetz MP 2004. DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat. Struct. Mol. Biol. 11:643–49
    [Google Scholar]
  63. Mancini A, Lazzi C, Bernini V, Neviani E, Gatti M 2012. Identification of dairy lactic acid bacteria by tRNAAla–23S rDNA-RFLP. J. Microbiol. Methods 91:380–90
    [Google Scholar]
  64. Mell JC, Redfield RJ. 2014. Natural competence and the evolution of DNA uptake specificity. J. Bacteriol. 196:1471–83
    [Google Scholar]
  65. Midon M, Schäfer P, Pingoud A, Ghosh M, Moon AF et al. 2011. Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Res 39:623–34
    [Google Scholar]
  66. Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J et al. 2018. Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius. Cell Rep 22:1627–38
    [Google Scholar]
  67. Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP 2006. Plasmids of lactococci: genetic accessories or genetic necessities?. FEMS Microbiol. Rev. 30:243–73
    [Google Scholar]
  68. Mirouze N, Bergé MA, Soulet A-L, Mortier-Barrière I, Quentin Y et al. 2013. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. PNAS 110:E1035–44
    [Google Scholar]
  69. Mirouze N, Desai Y, Raj A, Dubnau D 2012. Spo0A∼P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis. PLOS Genet 8:e1002586
    [Google Scholar]
  70. Mitrikeski PT. 2015. Ecologically driven competence for exogenous DNA uptake in yeast. Curr. Microbiol. 70:883–93
    [Google Scholar]
  71. Mokoena MP. 2017. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:81255
    [Google Scholar]
  72. Moreno-Cinos C, Goossens K, Salado IG, Van Der Veken P, De Winter H, Augustyns K. 2019. ClpP protease, a promising antimicrobial target. Int. J. Mol. Sci. 20:2232
    [Google Scholar]
  73. Mulder J, Wels M, Kuipers OP, Kleerebezem M, Bron PA 2017. Unleashing natural competence in Lactococcus lactis by induction of the competence regulator ComX. Appl. Environ. Microbiol. 82:20e01320–17
    [Google Scholar]
  74. Mulder J, Wels M, Kuipers OP, Kleerebezem M, Bron PA 2018. Induction of natural competence in genetically-modified Lactococcus lactis. Bio-Protocol 8:e2922
    [Google Scholar]
  75. Murphy J, Bottacini F, Mahony J, Kelleher P, Neve H et al. 2016. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Sci. Rep. 6:21345
    [Google Scholar]
  76. Palchevskiy V, Finkel SE. 2009. A role for single-stranded exonucleases in the use of DNA as a nutrient. J. Bacteriol. 191:3712–16
    [Google Scholar]
  77. Rahmer R, Morabbi Heravi K, Altenbuchner J 2015. Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Front. Microbiol. 6:1431
    [Google Scholar]
  78. Redon E, Loubiere P, Cocaign-Bousquet M. 2005. Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J. Bacteriol. 187:3589–92
    [Google Scholar]
  79. Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM et al. 2014. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol. Evol. 6:741–53
    [Google Scholar]
  80. Ruffell D. 2018. The EU Court of Justice extends the GMO directive to gene-edited organisms. FEBS Lett 592:3653–57
    [Google Scholar]
  81. Salgado-Pabón W, Du Y, Hackett KT, Lyons KM, Arvidson CG, Dillard JP. 2010. Increased expression of the type IV secretion system in piliated Neisseria gonorrhoeae variants. J. Bacteriol. 192:1912–20
    [Google Scholar]
  82. Salvadori G, Junges R, Morrison DA, Petersen FC. 2019. Competence in Streptococcus pneumoniae and close commensal relatives: mechanisms and implications. Front. Cell. Infect. Microbiol. 9:94
    [Google Scholar]
  83. Schmid S, Bevilacqua C, Crutz-Le Coq A-M. 2012. Alternative sigma factor σH activates competence gene expression in Lactobacillus sakei. BMC Microbiol 12:32
    [Google Scholar]
  84. Serrano E, Carrasco B, Gilmore JL, Takeyasu K, Alonso JC. 2018. RecA regulation by RecU and DprA during Bacillus subtilis natural plasmid transformation. Front. Microbiol. 9:1514
    [Google Scholar]
  85. Smid EJ, Erkus O, Spus M, Wolkers-Rooijackers JCM, Alexeeva S, Kleerebezem M 2014. Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microb. Cell Fact. 13:Suppl. 1S2
    [Google Scholar]
  86. Solomon JM, Grossman AD. 1996. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–55
    [Google Scholar]
  87. Stiegelmeyer SM, Giddings MC. 2013. Agent-based modeling of competence phenotype switching in Bacillus subtilis. Theor. Biol. Med. Model. 10:23
    [Google Scholar]
  88. Strom MS, Nunn D, Lory S. 1991. Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa. J. Bacteriol. 173:1175–80
    [Google Scholar]
  89. Tovpeko Y, Bai J, Morrison DA. 2016. Competence for genetic transformation in Streptococcus pneumoniae: mutations in σA bypass the ComW requirement for late gene expression. J. Bacteriol. 198:2370–78
    [Google Scholar]
  90. Turgay K, Hamoen LW, Venema G, Dubnau D. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11:119–28
    [Google Scholar]
  91. Underhill SAM, Shields RC, Kaspar JR, Haider M, Burne RA, Hagen SJ. 2018. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. mSphere 3:5e00444–18
    [Google Scholar]
  92. van Sinderen D, Kiewiet R, Venema G 1995. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Mol. Microbiol. 15:213–23
    [Google Scholar]
  93. van Sinderen D, Venema G. 1994. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176:5762–70
    [Google Scholar]
  94. Wahl A, Servais F, Drucbert A-S, Foulon C, Fontaine L, Hols P. 2014. Control of natural transformation in Salivarius streptococci through specific degradation of σX by the MecA-ClpCP protease complex. J. Bacteriol. 196:2807–16
    [Google Scholar]
  95. Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C et al. 2007. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J. Bacteriol. 189:3256–70
    [Google Scholar]
  96. Weng L, Piotrowski A, Morrison DA 2013. Exit from competence for genetic transformation in Streptococcus pneumoniae is regulated at multiple levels. PLOS ONE 8:e64197
    [Google Scholar]
  97. Wydau S, Dervyn R, Anba J, Dusko Ehrlich S, Maguin E 2006. Conservation of key elements of natural competence in Lactococcus lactis ssp. FEMS Microbiol. Lett. 257:32–42
    [Google Scholar]
  98. Yang Y, Koirala B, Sanchez LA, Phillips NR, Hamry SR, Tal-Gan Y. 2017. Structure-activity relationships of the competence stimulating peptides (CSPs) in Streptococcus pneumoniae reveal motifs critical for intra-group and cross-group ComD receptor activation. ACS Chem. Biol. 12:1141–51
    [Google Scholar]
  99. Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H, Wells JM 2014. Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLOS ONE 9:e99394
    [Google Scholar]
  100. Zaccaria E, Wels M, van Baarlen P, Wells JM. 2016. Temporal regulation of the transformasome and competence development in Streptococcus suis. Front. Microbiol. 7:1922–22
    [Google Scholar]
  101. Zhou Y, Drouin P, Lafrenière C. 2016. Effect of temperature (5–25°C) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. J. Appl. Microbiol. 121:657–71
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-011445
Loading
/content/journals/10.1146/annurev-food-052720-011445
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error