1932

Abstract

Root-knot nematodes (RKNs; spp.) engage in complex parasitic interactions with many different host plants around the world, initiating elaborate feeding sites and disrupting host root architecture. Although RKNs have been the focus of research for many decades, new molecular tools have provided useful insights into the biological mechanisms these pests use to infect and manipulate their hosts. From identifying host defense mechanisms underlying resistance to RKNs to characterizing nematode effectors that alter host cellular functions, the past decade of research has significantly expanded our understanding of RKN–plant interactions, and the increasing number of quality parasite and host genomes promises to enhance future research efforts into RKNs. In this review, we have highlighted recent discoveries, summarized the current understanding within the field, and provided links to new and useful resources for researchers. Our goal is to offer insights and tools to support the study of molecular RKN–plant interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-120943
2022-08-26
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021621-120943.html?itemId=/content/journals/10.1146/annurev-phyto-021621-120943&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ et al. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. . Nat. Biotechnol. 26:909–15
    [Google Scholar]
  2. 2.
    Ali A, Matthews WC, Cavagnaro PF, Iorizzo M, Roberts PA, Simon PW. 2013. Inheritance and mapping of Mj-2, a new source of root-knot nematode (Meloidogyne javanica) resistance in carrot. J. Hered. 105:288–91
    [Google Scholar]
  3. 3.
    Ali S, Magne M, Chen S, Obradovic N, Jamshaid L et al. 2015. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. Front. Plant Sci. 6:623
    [Google Scholar]
  4. 4.
    Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I. 2003. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor. Appl. Genet. 106:478–84
    [Google Scholar]
  5. 5.
    Anthony F, Topart P, Martinez A, do Céu Silva M, Nicole M 2005. Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathol 54:476–82
    [Google Scholar]
  6. 6.
    Anwar SA, McKenry M. 2000. Penetration, development and reproduction of Meloidogyne arenaria on two new resistant Vitis spp. Nematropica 30:19–18
    [Google Scholar]
  7. 7.
    Aryal SK, Davis RF, Stevenson KL, Timper P, Ji P 2011. Induction of systemic acquired resistance by Rotylenchulus reniformis and Meloidogyne incognita in cotton following separate and concomitant inoculations. J. Nematol. 43:160–65
    [Google Scholar]
  8. 8.
    Bakari KA, Marie-Claire K, Bernard C, Jean-Paul D, Didier F et al. 2006. A major gene mapped on chromosome XII is the main factor of a quantitatively inherited resistance to Meloidogyne fallax in Solanum sparsipilum. . Theor. Appl. Genet. 112:699–707
    [Google Scholar]
  9. 9.
    Balhadere P, Evans P. 1995. Cytochemical investigations of resistance to root-knot nematode Meloidogyne naasi in cereals and grasses using cryosections of roots. Fundam. Appl. Nematol. 18:539–48
    [Google Scholar]
  10. 10.
    Bali S, Hu S, Vining K, Brown C, Mojtahedi H et al. 2021. Nematode genome announcement: draft genome of Meloidogyne chitwoodi, an economically important pest of potato in the Pacific Northwest. Mol. Plant-Microbe Interact. 34:981–86
    [Google Scholar]
  11. 11.
    Barloy D, Lemoine J, Dredryver F, Jahier J, McIntosh RA. 2000. Molecular markers linked to the Aegilops variabilis-derived root-knot nematode resistance gene Rkn-mn1 in wheat. Plant Breed 119:169–72
    [Google Scholar]
  12. 12.
    Barrett B, Mercer C, Woodfield D. 2005. Genetic mapping of a root-knot nematode resistance locus in Trifolium. Euphytica 143:85–92
    [Google Scholar]
  13. 13.
    Bartels S, Boller T. 2015. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. . J. Exp. Bot. 66:5183–93
    [Google Scholar]
  14. 14.
    Bellafiore S, Shen Z, Rosso M-N, Abad P, Shih P, Briggs SP. 2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLOS Pathog 4:e1000192
    [Google Scholar]
  15. 15.
    Bendezu IF, Starr JL. 2003. Mechanism of resistance to Meloidogyne arenaria in the peanut cultivar COAN. J. Nematol. 35:115–18
    [Google Scholar]
  16. 16.
    Bernoux M, Timmers T, Jauneau A, Brière C, de Wit PJ et al. 2008. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20:2252–64
    [Google Scholar]
  17. 17.
    Berthou F, Palloix A, Mugniéry D. 2003. Characterisation of virulence in populations of Meloidogyne chitwoodi and evidence for a resistance gene in pepper Capsicum annuum L. line PM 217. Nematology 5:383–90
    [Google Scholar]
  18. 18.
    Bhattarai KK, Xie Q-G, Mantelin S, Bishnoi U, Girke T et al. 2008. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol. Plant-Microbe Interact. 21:1205–14
    [Google Scholar]
  19. 19.
    Biere A, Goverse A. 2016. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu. Rev. Phytopathol. 54:499–527
    [Google Scholar]
  20. 20.
    Bird AF. 1962. Orientation of the larvae of Meloidogyne javanica relative to roots. Nematologica 8:275–87
    [Google Scholar]
  21. 21.
    Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EG. 2015. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142:Suppl. 1S71–84
    [Google Scholar]
  22. 22.
    Blanc-Mathieu R, Perfus-Barbeoch L, Aury J-M, Da Rocha M, Gouzy J et al. 2017. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. . PLOS Genet. 13:e1006777
    [Google Scholar]
  23. 23.
    Bleve-Zacheo T, Bongiovanni M, Melillo MT, Castagnone-Sereno P. 1998. The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Sci. 133:79–90
    [Google Scholar]
  24. 24.
    Bobay BG, DiGennaro P, Scholl E, Imin N, Djordjevic MA, Mck Bird D 2013. Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Lett 587:3979–85
    [Google Scholar]
  25. 25.
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  26. 26.
    Bournaud C, Gillet F-X, Murad AM, Bresso E, Albuquerque EVS, Grossi-de-Sá MF. 2018. Meloidogyne incognita PASSE-MURAILLE (MiPM) gene encodes a cell-penetrating protein that interacts with the CSN5 subunit of the COP9 signalosome. Front. Plant Sci. 9:904
    [Google Scholar]
  27. 27.
    Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  28. 28.
    Brown CR, Yang CP, Mojtahedi H, Santo GS, Masuelli R. 1996. RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2 population. Theor. Appl. Genet. 92:572–76
    [Google Scholar]
  29. 29.
    Bucki P, Paran I, Ozalvo R, Iberkleid I, Ganot L, Braun Miyara S 2017. Pathogenic variability of Meloidogyne incognita populations occurring in pepper-production greenhouses in Israel toward Me1, Me3 and N pepper resistance genes. Plant Dis 101:81391–401
    [Google Scholar]
  30. 30.
    Cabasan MTN, Kumar A, De Waele D. 2012. Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes. Nematology 14:405–15
    [Google Scholar]
  31. 31.
    Cao K, Wang L, Zhao P, Zhu G, Fang W et al. 2014. Identification of a candidate gene for resistance to root-knot nematode in a wild peach and screening of its polymorphisms. Plant Breed. 133:4530–35
    [Google Scholar]
  32. 32.
    Carella P, Evangelisti E, Schornack S. 2018. Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. Curr. Opin. Plant Biol. 44:175–80
    [Google Scholar]
  33. 33.
    Castagnone-Sereno P. 2002. Genetic variability of nematodes: a threat to the durability of plant resistance genes?. Euphytica 124:193–99
    [Google Scholar]
  34. 34.
    Castagnone-Sereno P, Semblat JP, Castagnone C. 2009. Modular architecture and evolution of the map-1 gene family in the root-knot nematode Meloidogyne incognita. Mol. Genet. Genom. 282:547–54
    [Google Scholar]
  35. 35.
    Čepulytė R, Danquah WB, Bruening G, Williamson VM. 2018. Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species. Sci. Rep. 8:10847
    [Google Scholar]
  36. 36.
    Changkwian A, Venkatesh J, Lee J-H, Han J-W, Kwon J-K et al. 2019. Physical localization of the root-knot nematode (Meloidogyne incognita) resistance locus Me7 in pepper (Capsicum annuum). Front. Plant Sci. 10:886
    [Google Scholar]
  37. 37.
    Chen J, Hu L, Sun L, Lin B, Huang K et al. 2018. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Mol. Plant Pathol. 19:1942–55
    [Google Scholar]
  38. 38.
    Chen J, Li Z, Lin B, Liao J, Zhuo K. 2021. A Meloidogyne graminicola pectate lyase is involved in virulence and activation of host defense responses. Front. Plant Sci. 12:651627
    [Google Scholar]
  39. 39.
    Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J. 2017. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLOS Pathog 13:e1006301
    [Google Scholar]
  40. 40.
    Chitwood DJ. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40:221–49
    [Google Scholar]
  41. 41.
    Choi HW, Klessig DF. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16:232
    [Google Scholar]
  42. 42.
    Choi I, Subramanian P, Shim D, Oh B-J, Hahn B-S. 2017. RNA-Seq of plant-parasitic nematode Meloidogyne incognita at various stages of its development. Front. Genet 8:190
    [Google Scholar]
  43. 43.
    Chopra D, Hasan MS, Matera C, Chitambo O, Mendy B et al. 2021. Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase-mediated ROS to promote infection. New Phytol 232:1318–31
    [Google Scholar]
  44. 44.
    Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B et al. 2004. Location of independent root-knot nematode resistance genes in plum and peach. Theor. Appl. Genet. 108:765–73
    [Google Scholar]
  45. 45.
    Claverie M, Dirlewanger E, Bosselut N, Van Ghelder C, Voisin R et al. 2011. The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region. Plant Physiol 156:779–92
    [Google Scholar]
  46. 46.
    Clevenger J, Chu Y, Arrais Guimaraes L, Maia T, Bertioli D et al. 2017. Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in Arachis hypogaea and reveals a candidate gene for resistance. Sci. Rep. 7:1317
    [Google Scholar]
  47. 47.
    Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97–119
    [Google Scholar]
  48. 48.
    Cooper WR, Jia L, Goggin L. 2005. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J. Chem. Ecol. 31:1953–67
    [Google Scholar]
  49. 49.
    Da Rocha M, Bournaud C, Dazenière J, Thorpe P, Bailly-Bechet M et al. 2021. Genome expression dynamics reveal the parasitism regulatory landscape of the root-knot nematode Meloidogyne incognita and a promoter motif associated with effector genes. Genes 12:5771
    [Google Scholar]
  50. 50.
    Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM et al. 2010. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. PNAS 107:17651–56
    [Google Scholar]
  51. 51.
    Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA. 2008. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J. Exp. Bot. 59:1305–13
    [Google Scholar]
  52. 52.
    Davies LJ, Zhang L, Elling AA. 2015. The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein. Nematology 17:655–66
    [Google Scholar]
  53. 53.
    de Almeida Engler J, Gheysen G. 2013. Nematode-induced endoreduplication in plant host cells: why and how?. Mol. Plant-Microbe Interact. 26:17–24
    [Google Scholar]
  54. 54.
    de Almeida Engler J, Rodiuc N, Smertenko A, Abad P. 2010. Plant actin cytoskeleton re-modeling by plant parasitic nematodes. Plant Signal. Behav. 5:213–17
    [Google Scholar]
  55. 55.
    de Vries S, Stukenbrock EH, Rose LE. 2020. Rapid evolution in plant–microbe interactions: an evolutionary genomics perspective. New Phytol 226:1256–62
    [Google Scholar]
  56. 56.
    Diaz-Granados A, Petrescu A-J, Goverse A, Smant G. 2016. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity. Front. Plant Sci. 7:1575
    [Google Scholar]
  57. 57.
    Ding X, Shields J, Allen R, Hussey RS 1998. A secretory cellulose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Mol. Plant-Microbe Interact. 11:952–59
    [Google Scholar]
  58. 58.
    Ding X, Shields J, Allen R, Hussey RS 2000. Molecular cloning and characterisation of a venom allergen AG5-like cDNA from Meloidogyne incognita. Int. J. Parasitol. 30:77–81
    [Google Scholar]
  59. 59.
    Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C et al. 2007. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor. Appl. Genet. 114:473–86
    [Google Scholar]
  60. 60.
    Djian-Caporalino C, Molinari S, Palloix A, Ciancio A, Fazari A et al. 2011. The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur. J. Plant Pathol. 131:431
    [Google Scholar]
  61. 61.
    Doyle EA, Lambert KN. 2002. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Mol. Plant-Microbe Interact. 15:549–56
    [Google Scholar]
  62. 62.
    Doyle EA, Lambert KN. 2003. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol. Plant-Microbe Interact. 16:123–31
    [Google Scholar]
  63. 63.
    Dubreuil G, Magliano M, Deleury E, Abad P, Rosso MN. 2007. Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytol 176:426–36
    [Google Scholar]
  64. 64.
    Duval H, Hoerter M, Polidori J, Confolent C, Masse M et al. 2014. High-resolution mapping of the RMia gene for resistance to root-knot nematodes in peach. Tree Genet. Genom. 10:297–306
    [Google Scholar]
  65. 65.
    Duval H, Van Ghelder C, Portier U, Confolent C, Meza P, Esmenjaud D. 2019. New data completing the spectrum of the Ma, RMia, and RMja genes for resistance to root-knot nematodes (Meloidogyne spp.) in Prunus. Phytopathology 109:615–22
    [Google Scholar]
  66. 66.
    Dyer S, Weir R, Cox D, Cheseto X, Torto B, Dalzell JJ. 2019. Ethylene response factor (ERF) genes modulate plant root exudate composition and the attraction of plant parasitic nematodes. Int. J. Parasitol. 49:999–1003
    [Google Scholar]
  67. 67.
    Espada M, Eves-van den Akker S, Maier T, Vijayapalani P, Baum T et al. 2018. STATAWAARS: a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus. . BMC Genom 19:553
    [Google Scholar]
  68. 68.
    Eves-van den Akker S, Birch PR. 2016. Opening the effector protein toolbox for plant-parasitic cyst nematode interactions. Mol. Plant 9:1451–53
    [Google Scholar]
  69. 69.
    Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EG et al. 2016. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 17:124
    [Google Scholar]
  70. 70.
    Eves-van den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE. 2016. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol. Plant Pathol. 17:1265–75
    [Google Scholar]
  71. 71.
    Eves-van den Akker S, Stojilković B, Gheysen G. 2021. Recent applications of biotechnological approaches to elucidate the biology of plant–nematode interactions. Curr. Opin. Biotechnol. 70:122–30
    [Google Scholar]
  72. 72.
    Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM et al. 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:1091–100
    [Google Scholar]
  73. 73.
    Fazari A, Palloix A, Wang L, Yan Hua M, Sage-Palloix A-M et al. 2012. The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131:665–73
    [Google Scholar]
  74. 74.
    Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P et al. 2021. Oxylipins are implicated as communication signals in tomato–root-knot nematode (Meloidogyne javanica) interaction. Sci. Rep. 11:326
    [Google Scholar]
  75. 75.
    Fudali SL, Wang C, Williamson VM. 2013. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. Mol. Plant-Microbe Interact. 26:75–86
    [Google Scholar]
  76. 76.
    Fujimoto T, Mizukubo T, Abe H, Seo S 2015. Sclareol induces plant resistance to root-knot nematode partially through ethylene-dependent enhancement of lignin accumulation. Mol. Plant-Microbe Interact. 28:398–407
    [Google Scholar]
  77. 77.
    Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T. 2011. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J. Plant Physiol. 168:1084–97
    [Google Scholar]
  78. 78.
    Gheysen G, Mitchum MG. 2019. Phytoparasitic nematode control of plant hormone pathways. Plant Physiol 179:1212–26
    [Google Scholar]
  79. 79.
    Gleason C, Leelarasamee N, Meldau D, Feussner I. 2016. OPDA has key role in regulating plant susceptibility to the root-knot nematode Meloidogyne hapla in Arabidopsis. Front. Plant Sci. 7:1565
    [Google Scholar]
  80. 80.
    Gleason C, Polzin F, Habash SS, Zhang L, Utermark J et al. 2017. Identification of two Meloidogyne hapla genes and an investigation of their roles in the plant-nematode interaction. Mol. Plant-Microbe Interact. 30:101–12
    [Google Scholar]
  81. 81.
    Gleason CA, Liu QL, Williamson VM. 2008. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. Mol. Plant-Microbe Interact. 21:576–85
    [Google Scholar]
  82. 82.
    Godinho Mendes RA, Basso MF, Fernandes de Araújo J, Paes de Melo B, Lima RN et al. 2021. Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Exp. Parasitol. 229:108153
    [Google Scholar]
  83. 83.
    Gross SM, Williamson VM. 2011. Tm1: a mutator/foldback transposable element family in root-knot nematodes. PLOS ONE 6:e24534
    [Google Scholar]
  84. 84.
    Grossi-de-Sa M, Petitot AS, Xavier DA, MEL, Mezzalira I et al. 2019. Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. Planta 250:1215–27
    [Google Scholar]
  85. 85.
    Grundler FMW, Munch A, Wyss U. 1992. The parasitic behaviour of second-stage juveniles of Meloido-gyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111
    [Google Scholar]
  86. 86.
    Haegeman A, Jones JT, Danchin EG. 2011. Horizontal gene transfer in nematodes: a catalyst for plant parasitism?. Mol. Plant-Microbe Interact. 24:879–87
    [Google Scholar]
  87. 87.
    Hajihassani A, Marquez J, Woldemeskel M, Hamidi N. 2022. Identification of four populations of Meloidogyne incognita in Georgia, United States, capable of parasitizing tomato bearing Mi-1.2 gene. Plant Dis 106:1137–43
    [Google Scholar]
  88. 88.
    Hajihassani A, Rutter WB, Luo X. 2019. Resistant pepper carrying N, Me1, and Me3 have different effects on penetration and reproduction of four major Meloidogyne species. J. Nematol. 51:1–9
    [Google Scholar]
  89. 89.
    Hamamouch N, Li C, Seo PJ, Park CM, Davis EL. 2011. Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol. Plant Pathol. 12:355–64
    [Google Scholar]
  90. 90.
    Haynes RL, Jones CM. 1976. Effects of Bi locus in cucumber on reproduction, attraction, and response of plant to infection by southern root-knot nematode. J. Am. Soc. Hortic. Sci. 101:422–24
    [Google Scholar]
  91. 91.
    Hendy H, Dalmasso A, Cardin MC. 1985. Differences in resistant Capsicum annuum attacked by different Meloidogyne species. Nematologica 31:72–78
    [Google Scholar]
  92. 92.
    Herrera-Vásquez A, Salinas P, Holuigue L. 2015. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 6:171
    [Google Scholar]
  93. 93.
    Hillocks RJ. 1986. Localised and systemic effects of root-knot nematode on incidence and severity of fusarium wilt in cotton. Nematologica 32:202–8
    [Google Scholar]
  94. 94.
    Holbein J, Franke RB, Marhavý P, Fujita S, Górecka M et al. 2019. Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. Plant J 100:221–36
    [Google Scholar]
  95. 95.
    Hooks C, Wang K-H, Ploeg A, McSorley R. 2010. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl. Soil Ecol. 46:3307–20
    [Google Scholar]
  96. 96.
    Hou S, Liu Z, Shen H, Wu D. 2019. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10:646
    [Google Scholar]
  97. 97.
    Hu Y, Hewezi T. 2018. Nematode-secreted peptides and host factor mimicry. J. Exp. Bot. 69:2866–68
    [Google Scholar]
  98. 98.
    Hu Y, You J, Li C, Hua C, Wang C. 2017. Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean. Nematology 19:293–304
    [Google Scholar]
  99. 99.
    Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. PNAS 103:14302–6
    [Google Scholar]
  100. 100.
    Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS 2006. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant-Microbe Interact. 19:463–70
    [Google Scholar]
  101. 101.
    Huang G, Gao B, Maier T, Allen R, Davis EL et al. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 16:376–81
    [Google Scholar]
  102. 102.
    Huang W-K, Ji H-L, Gheysen G, Kyndt T 2016. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation: VB1-induced priming against root-knot nematode. Mol. Plant Pathol. 17:614–24
    [Google Scholar]
  103. 103.
    Huffaker A, Pearce G, Ryan CA. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS 103:10098–103
    [Google Scholar]
  104. 104.
    Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz SB. 2013. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLOS ONE 8:e64586
    [Google Scholar]
  105. 105.
    Janssen GJW, Scholten OE, van Norel A, Hoogendoorn C. 1998. Selection of virulence in Meloidogyne chitwoodi to resistance in the wild potato Solanum fendleri. Eur. J. Plant Pathol. 104:645–51
    [Google Scholar]
  106. 106.
    Jaouannet M, Magliano M, Arguel MJ, Gourgues M, Evangelisti E et al. 2013. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Mol. Plant-Microbe Interact. 26:97–105
    [Google Scholar]
  107. 107.
    Jaouannet M, Perfus-Barbeoch L, Deleury E, Magliano M, Engler G et al. 2012. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. New Phytol 194:924–31
    [Google Scholar]
  108. 108.
    Jaubert S, Laffaire JB, Abad P, Rosso MN. 2002. A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. FEBS Lett 522:109–12
    [Google Scholar]
  109. 109.
    Ji H, Kyndt T, He W, Vanholme B, Gheysen G. 2015. β-Aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Mol. Plant-Microbe Interact. 28:519–33
    [Google Scholar]
  110. 110.
    Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ et al. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. PNAS 96:13583–88
    [Google Scholar]
  111. 111.
    Jones JDG, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  112. 112.
    Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. 2019. Help wanted: helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50:82–94
    [Google Scholar]
  113. 113.
    Kadota Y, Shirasu K, Zipfel C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472–80
    [Google Scholar]
  114. 114.
    Kaplan D, Keen N. 1980. Mechanisms conferring plant incompatibility to nematodes. Rev. Nematol. 3:1123–34
    [Google Scholar]
  115. 115.
    Kaplan F, Alborn HT, von Reuss SH, Ajredini R, Ali JG et al. 2012. Interspecific nematode signals regulate dispersal behavior. PLOS ONE 7:e38735
    [Google Scholar]
  116. 116.
    Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF. 2008. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol. Lett. 11:841–51
    [Google Scholar]
  117. 117.
    Kaplan I, Sardanelli S, Rehill BJ, Denno RF. 2011. Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia 166:627–36
    [Google Scholar]
  118. 118.
    Kihika R, Tchouassi DP, Ng'ang'a MM, Hall DR, Beck JJ, Torto B 2020. Compounds associated with infection by the root-knot nematode, Meloidogyne javanica, influence the ability of infective juveniles to recognize host plants. J. Agric. Food Chem. 68:9100–9
    [Google Scholar]
  119. 119.
    Kim J, Yang R, Chang C, Park Y, Tucker ML. 2018. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. J. Exp. Bot. 69:3009–21
    [Google Scholar]
  120. 120.
    Klessig DF, Choi HW, Dempsey DA. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31:871–88
    [Google Scholar]
  121. 121.
    Kourelis J, van der Hoorn RAL. 2018. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–99
    [Google Scholar]
  122. 122.
    Koutsovoulos GD, Poullet M, Elashry A, Kozlowski DK, Sallet E et al. 2020. Genome assembly and annotation of Meloidogyne enterolobii, an emerging parthenogenetic root-knot nematode. Sci. Data 7:324
    [Google Scholar]
  123. 123.
    Koutsovoulos GD, Marques E, Arguel M, Duret L, Machado AC et al. 2020. Population genomics supports clonal reproduction and multiple independent gains and losses of parasitic abilities in the most devastating nematode pest. Evol. Appl. 13:442–57
    [Google Scholar]
  124. 124.
    Kozlowski DKL, Hassanaly-Goulamhoussen R, Da Rocha M, Koutsovoulos GD, Bailly-Bechet M, Danchin EGJ 2021. Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. Evol. Appl. 14:1844–66
    [Google Scholar]
  125. 125.
    Kranse O, Beasley H, Adams S, Pires-daSilva A, Bell C et al. 2021. Toward genetic modification of plant-parasitic nematodes: delivery of macromolecules to adults and expression of exogenous mRNA in second stage juveniles. G3 11:2jkaa058
    [Google Scholar]
  126. 126.
    Krol E, Mentzel T, Chinchilla D, Boller T, Felix G et al. 2010. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chem. 285:13471–79
    [Google Scholar]
  127. 127.
    Kumpf RP, Shi C-L, Larrieu A, Stø IM, Butenko MA et al. 2013. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. PNAS 110:5235–40
    [Google Scholar]
  128. 128.
    Kyndt T, Goverse A, Haegeman A, Warmerdam S, Wanjau C et al. 2016. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes. J. Exp. Bot. 67:4559–70
    [Google Scholar]
  129. 129.
    Kyndt T, Nahar K, Haeck A, Verbeek R, Demeestere K, Gheysen G. 2017. Interplay between barotenoids, abscisic acid and jasmonate guides the compatible rice-Meloidogyne graminicola interaction. Front. Plant Sci. 8:951
    [Google Scholar]
  130. 130.
    Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Höfte M, Gheysen G. 2012. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol 14:73–82
    [Google Scholar]
  131. 131.
    Kyndt T, Zemene HY, Haeck A, Singh R, De Vleesschauwer D et al. 2017. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease. Mol. Plant-Microbe Interact. 30:255–66
    [Google Scholar]
  132. 132.
    Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL. 2018. Plant elicitor peptides promote plant defences against nematodes in soybean. Mol. Plant Pathol. 19:858–69
    [Google Scholar]
  133. 133.
    Leelarasamee N, Zhang L, Gleason C. 2018. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism. PLOS Pathog 14:e1006947
    [Google Scholar]
  134. 134.
    Li X, Yang D, Niu J, Zhao J, Jian H. 2016. De novo analysis of the transcriptome of Meloidogyne enterolobii to uncover potential target genes for biological control. Int. J. Mol. Sci. 17:91442
    [Google Scholar]
  135. 135.
    Lin B, Zhuo K, Chen S, Hu L, Sun L et al. 2016. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol 209:1159–73
    [Google Scholar]
  136. 136.
    Lin B, Zhuo K, Wu P, Cui R, Zhang LH, Liao J. 2013. A novel effector protein, MJ-NULG1a, targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism. Mol. Plant-Microbe Interact. 26:55–66
    [Google Scholar]
  137. 137.
    Liu H, Nichols RL, Qiu L, Sun R, Zhang B, Pan X. 2019. Small RNA sequencing reveals regulatory roles of microRNAs in the development of Meloidogyne incognita. Int. J. Mol. Sci. 20:215466
    [Google Scholar]
  138. 138.
    Lozano-Torres JL, Wilbers RH, Gawronski P, Boshoven JC, Finkers-Tomczak A et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. PNAS 109:10119–24
    [Google Scholar]
  139. 139.
    Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. 2014. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2:e356
    [Google Scholar]
  140. 140.
    Macharia TN, Bellieny-Rabelo D, Moleleki LN 2020. Transcriptome profiling of potato (Solanum tuberosum L.) responses to root-knot nematode (Meloidogyne javanica) infestation during a compatible interaction. Microorganisms 8:91443
    [Google Scholar]
  141. 141.
    Manohar M, Tenjo-Castano F, Chen S, Zhang YK, Kumari A et al. 2020. Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nat. Commun. 11:208
    [Google Scholar]
  142. 142.
    Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A et al. 2015. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6:7795
    [Google Scholar]
  143. 143.
    Maquilan MA, Olmstead M, Olmstead J, Dickson D, Chaparro J. 2018. Genetic analyses of resistance to the peach root-knot nematode (Meloidogyne floridensis) using microsatellite markers. Tree Genet. Genomes 14:47
    [Google Scholar]
  144. 144.
    Marley PS, Hillocks RJ. 1994. Effect of root-knot nematodes on cajanol accumulation in the vascular tissues of pigeonpea after stem inoculation with Fusarium udum. Plant Pathol 43:172–76
    [Google Scholar]
  145. 145.
    Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM. 2017. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–77
    [Google Scholar]
  146. 146.
    Mbaluto CM, Ahmad EM, Mädicke A, Grosser K, van Dam NM, Martínez-Medina A. 2021. Induced local and systemic defense responses in tomato underlying interactions between the root-knot nematode Meloidogyne incognita and the potato aphid Macrosiphum euphorbiae. Front. Plant Sci. 12:632212
    [Google Scholar]
  147. 147.
    Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. 2021. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. J. Exp. Bot. 72:227909–26
    [Google Scholar]
  148. 148.
    Mei Y, Thorpe P, Guzha A, Haegeman A, Blok VC et al. 2015. Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2. Nematology 17:409–24
    [Google Scholar]
  149. 149.
    Mejias J, Bazin J, Truong NM, Chen Y, Marteu N et al. 2021. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. New Phytol 229:3408–23
    [Google Scholar]
  150. 150.
    Melillo MT, Leonetti P, Veronico P. 2014. Benzothiadiazole effect in the compatible tomato-Meloidogyne incognita interaction: changes in giant cell development and priming of two root anionic peroxidases. Planta 240:841–54
    [Google Scholar]
  151. 151.
    Mendy B, Wang'ombe MW, Radakovic ZS, Holbein J, Ilyas M et al. 2017. Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLOS Pathog 13:e1006284
    [Google Scholar]
  152. 152.
    Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–19
    [Google Scholar]
  153. 153.
    Mitchum MG, Wang X, Wang J, Davis EL 2012. Role of nematode peptides and other small molecules in plant parasitism. Annu. Rev. Phytopathol. 50:175–95
    [Google Scholar]
  154. 154.
    Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A et al. 2006. A symbiont-independent endo-1,4-beta-xylanase from the plant-parasitic nematode Meloidogyne incognita. . Mol. Plant-Microbe Interact. 19:521–29
    [Google Scholar]
  155. 155.
    Mitsumasu K, Seto Y, Yoshida S. 2015. Apoplastic interactions between plants and plant root intruders. Front. Plant Sci. 6:617
    [Google Scholar]
  156. 156.
    Molinari S. 2016. Systemic acquired resistance activation in solanaceous crops as a management strategy against root-knot nematodes. Pest Manag. Sci. 72:888–96
    [Google Scholar]
  157. 157.
    Molinari S, Fanelli E, Leonetti P. 2014. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Mol. Plant Pathol. 15:255–64
    [Google Scholar]
  158. 158.
    Mongae A, Moleleki L. 2015. The effect of β-aminobutyric acid (BABA) on root knot nematode and soft rot pathogen disease complexes in Solanum tuberosum plants. Eur. J. Plant Pathol. 142:117–24
    [Google Scholar]
  159. 159.
    Muirhead CS, Srinivasan J. 2020. Small molecule signals mediate social behaviors in C. elegans. J. Neurogenet. 34:395–403
    [Google Scholar]
  160. 160.
    Naalden D, Haegeman A, de Almeida-Engler J, Birhane Eshetu F, Bauters L, Gheysen G 2018. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. Mol. Plant Pathol. 19:2416–30
    [Google Scholar]
  161. 161.
    Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–16
    [Google Scholar]
  162. 162.
    Nakagami S, Saeki K, Toda K, Ishida T, Sawa S. 2020. The atypical E2F transcription factor DEL1 modulates growth–defense tradeoffs of host plants during root-knot nematode infection. Sci. Rep. 10:8836
    [Google Scholar]
  163. 163.
    Naor N, Gurung FB, Ozalvo R, Bucki P, Sanadhya P, Miyara SB. 2018. Tight regulation of allene oxide synthase (AOS) and allene oxide cyclase-3 (AOC3) promote Arabidopsis susceptibility to the root-knot nematode Meloidogyne javanica. . Eur. J. Plant Pathol. 150:149–65
    [Google Scholar]
  164. 164.
    Ndeve AD, Santos JRP, Matthews WC, Huynh BL, Guo Y-N et al. 2019. A novel root-knot nematode resistance QTL on chromosome Vu01 in cowpea. G3 9:1199–209
    [Google Scholar]
  165. 165.
    Nguyen CN, Perfus-Barbeoch L, Quentin M, Zhao J, Magliano M et al. 2018. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism. New Phytol 217:687–99
    [Google Scholar]
  166. 166.
    Niu J, Liu P, Liu Q, Chen C, Guo Q et al. 2016. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci. Rep. 6:19443
    [Google Scholar]
  167. 167.
    Nombela G, Williamson VM, Muñiz M. 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant-Microbe Interact. 16:645–49
    [Google Scholar]
  168. 168.
    Ohyama K, Ogawa M, Matsubayashi Y. 2008. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–60
    [Google Scholar]
  169. 169.
    Oka Y, Cohen Y, Spiegel Y. 1999. Local and systemic induced resistance to the root-knot nematode in tomato by DL-β-amino-n-butyric acid. Phytopathology 89:1138–43
    [Google Scholar]
  170. 170.
    Oloka BM, da Silva Pereira G, Amankwaah VA, Mollinari M, Pecota KV et al. 2021. Discovery of a major QTL for root-knot nematode (Meloidogyne incognita) resistance in cultivated sweetpotato (Ipomoea batatas). Theor. Appl. Genet. 134:1945–55
    [Google Scholar]
  171. 171.
    Olson DM, Davis RF, Wäckers FL, Rains GC, Potter T. 2008. Plant–herbivore–carnivore interactions in cotton, Gossypium hirsutum: linking belowground and aboveground. J. Chem. Ecol. 34:1341–48
    [Google Scholar]
  172. 172.
    Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. 2021. Sedentary plant-parasitic nematodes alter auxin homeostasis via multiple strategies. Front. Plant Sci. 12:668548
    [Google Scholar]
  173. 173.
    Oota M, Tsai AY-L, Aoki D, Matsushita Y, Toyoda S et al. 2020. Identification of naturally occurring polyamines as root-knot nematode attractants. Mol. Plant 13:658–65
    [Google Scholar]
  174. 174.
    Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M et al. 2008. Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. PNAS 105:3914802–7
    [Google Scholar]
  175. 175.
    Ozalvo R, Cabrera J, Escobar C, Christensen SA, Borrego EJ et al. 2014. Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Mol. Plant Pathol. 15:319–32
    [Google Scholar]
  176. 176.
    Paganini J, Campan-Fournier A, Da Rocha M, Gouret P, Pontarotti P et al. 2012. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLOS ONE 7:e50875
    [Google Scholar]
  177. 177.
    Park JY, Joo H-J, Park S, Paik Y-K. 2019. Ascaroside pheromones: chemical biology and pleiotropic neuronal functions. Int. J. Mol. Sci. 20:3898
    [Google Scholar]
  178. 178.
    Parsons J, Matthews W, Iorizzo M, Roberts P, Simon P. 2015. Meloidogyne incognita nematode resistance QTL in carrot. Mol. Breed. 35:114
    [Google Scholar]
  179. 179.
    Peng Y, van Wersch R, Zhang Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 31:403–9
    [Google Scholar]
  180. 180.
    Petitot AS, Dereeper A, Da Silva C, Guy J, Fernandez D 2020. Analyses of the root-knot nematode (Meloidogyne graminicola) transcriptome during host infection highlight specific gene expression profiling in resistant rice plants. Pathogens 9:644
    [Google Scholar]
  181. 181.
    Phan NT, Orjuela J, Danchin EGJ, Klopp C, Perfus-Barbeoch L et al. 2020. Genome structure and content of the rice root-knot nematode (Meloidogyne graminicola). Ecol. Evol. 10:11006–21
    [Google Scholar]
  182. 182.
    Pietravalle S, Lemarié S, van den Bosch F. 2006. Durability of resistance and cost of virulence. Eur. J. Plant Pathol. 114:107–16
    [Google Scholar]
  183. 183.
    Ploeg AT. 1999. Greenhouse studies on the effect of marigolds (Tagetes spp.) on four Meloidogyne species. J. Nematol. 31:62–69
    [Google Scholar]
  184. 184.
    Ploeg AT, Maris PC. 1999. Effect of temperature on suppression of Meloidogyne incognita by Tagetes cultivars. J. Nematol. 31:709–14
    [Google Scholar]
  185. 185.
    Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR et al. 2019. Re-targeting of a plant defense protease by a cyst nematode effector. Plant J 98:1000–14
    [Google Scholar]
  186. 186.
    Pollok JR, Johnson CS, Eisenback JD, Reed TD. 2016. Reproduction of Meloidogyne incognita Race 3 on flue-cured tobacco homozygous for Rk1 and/or Rk2 resistance genes. J. Nematol. 48:79–86
    [Google Scholar]
  187. 187.
    Poveda J, Abril-Urias P, Escobar C. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 11:992
    [Google Scholar]
  188. 188.
    Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P et al. 2018. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genom. 19:321
    [Google Scholar]
  189. 189.
    Priya DB, Somasekhar N, Prasad J, Kirti P. 2011. Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita. BMC Res. Notes 4:231
    [Google Scholar]
  190. 190.
    Przybylska A, Obrępalska-Stęplowska A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant Soil 451:239–60
    [Google Scholar]
  191. 191.
    Rai KM, Balasubramanian VK, Welker CM, Pang M, Hii MM, Mendu V. 2015. Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes. BMC Plant Biol. 15:187
    [Google Scholar]
  192. 192.
    Robert-Seilaniantz A, Grant M, Jones JD. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–43
    [Google Scholar]
  193. 193.
    Ros-Ibanez C, Robertson L, Martinez-Lluch MD, Cano-Garcia A, Lacasa-Plasencia A. 2014. Development of virulence to Meloidogyne incognita on resistant pepper rootstocks. Span. J. Agric. Res. 12:225–32
    [Google Scholar]
  194. 194.
    Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. PNAS 95:9750–54
    [Google Scholar]
  195. 195.
    Rosso MN, Favery B, Piotte C, Arthaud L, De Boer JM et al. 1999. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant-Microbe Interact. 12:585–91
    [Google Scholar]
  196. 196.
    Roze E, Hanse B, Mitreva M, Vanholme B, Bakker J, Smant G 2008. Mining the secretome of the root-knot nematode Meloidogyne chitwoodi for candidate parasitism genes. Mol. Plant Pathol. 9:1–10
    [Google Scholar]
  197. 197.
    Rutter WB, Abolfazl H, Yuhui W, Yiqun W. 2021. Phenotypic characterization and molecular mapping of recessive resistance to Meloidogyne javanica in cucumber, Cucumis sativus. . Theor. Appl. Genet. In press
    [Google Scholar]
  198. 198.
    Rutter WB, Hewezi T, Maier TR, Mitchum MG, Davis EL et al. 2014. Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs. Phytopathology 104:879–85
    [Google Scholar]
  199. 199.
    Sahebani N, Hadavi NS, Zade FO. 2011. The effects of β-amino-butyric acid on resistance of cucumber against root-knot nematode, Meloidogyne javanica. Acta Physiol. Plant 33:443–50
    [Google Scholar]
  200. 200.
    Santos JRP, Ndeve AD, Huynh B-L, Matthews WC, Roberts PA. 2018. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLOS ONE 13:e0189185
    [Google Scholar]
  201. 201.
    Sanz-Alférez S, Mateos B, Alvarado R, Sánchez M. 2008. SAR induction in tomato plants is not effective against root-knot nematode infection. Eur. J. Pathol. 120:417–25
    [Google Scholar]
  202. 202.
    Sato K, Kadota Y, Gan P, Bino T, Uehara T et al. 2018. High-quality genome sequence of the root-knot nematode Meloidogyne arenaria genotype A2-O. Genome Announc. 6:e00519–18
    [Google Scholar]
  203. 203.
    Schoonmaker A, Hao Y, Bird DM, Conant GC 2020. A single, shared triploidy in three species of parasitic nematodes. G3 10:225–33
    [Google Scholar]
  204. 204.
    Schroeder FC. 2015. Modular assembly of primary metabolic building blocks: a chemical language in C. elegans. . Chem. Biol. 22:7–16
    [Google Scholar]
  205. 205.
    Semblat JP, Rosso MN, Hussey RS, Abad P, Castagnone-Sereno P. 2001. Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 14:72–79
    [Google Scholar]
  206. 206.
    Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T et al. 2008. Fungal effector protein AVR2 targets diversifying defense-related Cys proteases of tomato. Plant Cell 20:1169–83
    [Google Scholar]
  207. 207.
    Shi Q, Mao Z, Zhang X, Ling J, Lin R et al. 2018. The novel secreted Meloidogyne incognita effector MiISE6 targets the host nucleus and facilitates parasitism in Arabidopsis. Front. Plant Sci. 9:252
    [Google Scholar]
  208. 208.
    Shi Q, Mao Z, Zhang X, Zhang X, Wang Y et al. 2018. A Meloidogyne incognita effector MiISE5 suppresses programmed cell death to promote parasitism in host plant. Sci. Rep. 8:7256
    [Google Scholar]
  209. 209.
    Siddique S, Matera C, Radakovic ZS, Hasan MS, Gutbrod P et al. 2014. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Sci. Signal. 7:ra33
    [Google Scholar]
  210. 210.
    Singh D, Dutta TK, Shivakumara TN, Dash M, Bollinedi H, Rao U. 2021. Suberin biopolymer in rice root exodermis reinforces preformed barrier against Meloidogyne graminicola infection. Rice Sci 28:301–12
    [Google Scholar]
  211. 211.
    Somvanshi VS, Dash M, Bhat CG, Budhwar R, Godwin J et al. 2021. An improved draft genome assembly of Meloidogyne graminicola IARI strain using long-read sequencing. Gene 793:145748
    [Google Scholar]
  212. 212.
    Somvanshi VS, Tathode M, Shukla RN, Rao U. 2018. Nematode genome announcement: a draft genome for rice root-knot nematode, Meloidogyne graminicola. J. Nematol. 50:111–16
    [Google Scholar]
  213. 213.
    Song H, Lin B, Huang Q, Sun L, Chen J et al. 2021. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. J. Exp. Bot. 72:5638–55
    [Google Scholar]
  214. 214.
    Song H, Lin B, Huang Q, Sun T, Wang W et al. 2021. The Meloidogyne javanica effector Mj2G02 interferes with jasmonic acid signalling to suppress cell death and promote parasitism in Arabidopsis. Mol. Plant Pathol. 22:101288–301
    [Google Scholar]
  215. 215.
    Song J, Win J, Tian M, Schornack S, Kaschani F et al. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS 106:1654–59
    [Google Scholar]
  216. 216.
    Song W, Forderer A, Yu D, Chai J 2021. Structural biology of plant defence. New Phytol 229:692–711
    [Google Scholar]
  217. 217.
    Susič N, Koutsovoulos GD, Riccio C, Danchin EGJ, Blaxter ML et al. 2020. Genome sequence of the root-knot nematode Meloidogyne luci. J. Nematol. 52:e2020–25
    [Google Scholar]
  218. 218.
    Szitenberg A, Salazar-Jaramillo L, Blok VC, Laetsch DR, Joseph S et al. 2017. Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change. Genome Biol. Evol 9:2844–61
    [Google Scholar]
  219. 219.
    Taleski M, Imin N, Djordjevic MA. 2018. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 69:1829–36
    [Google Scholar]
  220. 220.
    Tan M, Alles R, Hutten R, Visser R, Eck H. 2009. Pyramiding of Meloidogyne hapla resistance genes in potato does not result in an increase of resistance. Potato Res 52:331–40
    [Google Scholar]
  221. 221.
    Tanaka K, Heil M. 2021. Damage-associated molecular patterns (DAMPs) in plant innate immunity: applying the danger model and evolutionary perspectives. Annu. Rev. Phytopathol. 59:53–75
    [Google Scholar]
  222. 222.
    Teixeira MA, Wei L, Kaloshian I. 2016. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytol 211:276–87
    [Google Scholar]
  223. 223.
    Thi Phan N, Besnard G, Ouazahrou R, Sánchez WS, Gil L et al. 2021. Genome sequence of the coffee root-knot nematode Meloidogyne exigua. J. Nematol. 53:e2021–65
    [Google Scholar]
  224. 224.
    Tian Z-l, Wang Z-h, Maria M, Qu N, Zheng J-w 2019. Meloidogyne graminicola protein disulfide isomerase may be a nematode effector and is involved in protection against oxidative damage. Sci. Rep. 9:11949
    [Google Scholar]
  225. 225.
    Tomalova I, Iachia C, Mulet K, Castagnone-Sereno P. 2012. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species. PLOS ONE 7:e38656
    [Google Scholar]
  226. 226.
    Topalović O, Bredenbruch S, Schleker ASS, Heuer H. 2020. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Front. Plant Sci. 11:138
    [Google Scholar]
  227. 227.
    Tripathi D, Raikhy G, Kumar D. 2019. Chemical elicitors of systemic acquired resistance—salicylic acid and its functional analogs. Curr. Plant Biol. 17:48–59
    [Google Scholar]
  228. 228.
    Trudgill DL, Blok VC. 2001. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 39:53–77
    [Google Scholar]
  229. 229.
    Truong NM, Chen Y, Mejias J, Soulé S, Mulet K et al. 2021. The Meloidogyne incognita nuclear effector MiEFF1 interacts with Arabidopsis sytosolic gyceraldehyde-3-phosphate dehydrogenases to promote parasitism. Front. Plant Sci. 12:641480
    [Google Scholar]
  230. 230.
    Tucker ML, Yang R 2013. A gene encoding a peptide with similarity to the plant IDA signaling peptide (AtIDA) is expressed most abundantly in the root-knot nematode (Meloidogyne incognita) soon after root infection. Exp. Parasitol. 134:165–70
    [Google Scholar]
  231. 231.
    Tytgat T, Vercauteren I, Vanholme B, De Meutter J, Vanhoutte I et al. 2005. An SXP/RAL-2 protein produced by the subventral pharyngeal glands in the plant parasitic root-knot nematode Meloidogyne incognita. Parasitol. Res. 95:50–54
    [Google Scholar]
  232. 232.
    Tzortzakakis EA, Adam MA, Blok VC, Paraskevopoulos C, Bourtzis K. 2005. Occurrence of resistance-breaking populations of root-knot nematodes on tomato in Greece. Eur. J. Plant Pathol. 113:101–5
    [Google Scholar]
  233. 233.
    Uncu AT, Celik I, Devran Z, Ozkaynak E, Frary A et al. 2015. Development of a SNP-based CAPS assay for the Me1 gene conferring resistance to root knot nematode in pepper. Euphytica 206:393–99
    [Google Scholar]
  234. 234.
    van Dam NM, Wondafrash M, Mathur V, Tytgat TOG. 2018. Differences in hormonal signaling triggered by two root-feeding nematode species result in contrasting effects on aphid population growth. Front. Ecol. Evol. 6:88
    [Google Scholar]
  235. 235.
    Van Ghelder C, Esmenjaud D, Callot C, Dubois E, Mazier M, Duval H. 2018. Ma orthologous genes in Prunus spp. shed light on a noteworthy NBS-LRR cluster conferring differential resistance to root-knot nematodes. Front. Plant Sci. 9:1269
    [Google Scholar]
  236. 236.
    Verbeek REM, Van Buyten E, Alam MZ, De Vleesschauwer D, Van Bockhaven J et al. 2019. Jasmonate-induced defense mechanisms in the belowground antagonistic interaction between Pythium arrhenomanes and Meloidogyne graminicola in rice. Front. Plant Sci. 10:1515
    [Google Scholar]
  237. 237.
    Verdejo-Lucas S, Cortada L, Sorribas FJ, Ornat C. 2009. Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathol 58:990–98
    [Google Scholar]
  238. 238.
    Vie AK, Najafi J, Winge P, Cattan E, Wrzaczek M et al. 2017. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. J. Exp. Bot. 68:3557–71
    [Google Scholar]
  239. 239.
    Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A et al. 2021. Systemic propagation of immunity in plants. New Phytol 229:1234–50
    [Google Scholar]
  240. 240.
    Wang G, Hu C, Zhou J, Liu Y, Cai J et al. 2019. Systemic root-shoot signaling drives jasmonate-based root defense against nematodes. Curr. Biol. 29:3430–38.e4
    [Google Scholar]
  241. 241.
    Wang J, Dhroso A, Liu X, Baum TJ, Hussey RS et al. 2021. Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal. New Phytol 229:563–74
    [Google Scholar]
  242. 242.
    Wang J, Lee C, Replogle A, Joshi S, Korkin D et al. 2010. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol 187:1003–17
    [Google Scholar]
  243. 243.
    Wang K-H, Hooks C, Ploeg A. 2007. Protecting crops from nematode pests: using marigold as an alternative to chemical nematicides. Plant Dis. Publ. PD-35 Univ. Hawaii Manoa, HI: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/pd-35.pdf
    [Google Scholar]
  244. 244.
    Wang X, Mitchum MG, Gao B, Li C, Diab H et al. 2005. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 6:187–91
    [Google Scholar]
  245. 245.
    Wondafrash M, Van Dam N, Tytgat T. 2013. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front. Plant Sci. 4:87
    [Google Scholar]
  246. 246.
    Wuyts N. 2006. Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. J. Exp. Bot. 57:2825–35
    [Google Scholar]
  247. 247.
    Xie J, Li S, Mo C, Wang G, Xiao X, Xiao Y 2016. A novel Meloidogyne incognita effector Misp12 suppresses plant defense response at latter stages of nematode parasitism. Front. Plant Sci. 7:964
    [Google Scholar]
  248. 248.
    Xu P, Zhao P-X, Cai X-T, Mao J-L, Miao Z-Q, Xiang C-B. 2020. Integration of jasmonic acid and ethylene into auxin signaling in root development. Front. Plant Sci. 11:271
    [Google Scholar]
  249. 249.
    Xue B, Hamamouch N, Li C, Huang G, Hussey RS et al. 2013. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103:175–81
    [Google Scholar]
  250. 250.
    Yaghoobi J, Yates JL, Williamson VM. 2005. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Mol. Genet. Genom. 274:60–69
    [Google Scholar]
  251. 251.
    Yamaguchi K, Kawasaki T. 2021. Pathogen- and plant-derived peptides trigger plant immunity. Peptides 144:170611
    [Google Scholar]
  252. 252.
    Yamaguchi Y, Pearce G, Ryan CA. 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. PNAS 103:10104–9
    [Google Scholar]
  253. 253.
    Yamaguchi YL, Ishida T, Sawa S. 2016. CLE peptides and their signaling pathways in plant development. J. Exp. Bot. 67:4813–26
    [Google Scholar]
  254. 254.
    Yi HY, Rufty RC, Wernsman EA, Conkling MC. 1998. Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis 82:1319–22
    [Google Scholar]
  255. 255.
    Youssef RM, MacDonald MH, Brewer EP, Bauchan GR, Kim KH, Matthews BF. 2013. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes. BMC Plant Biol. 13:67
    [Google Scholar]
  256. 256.
    Zhang B, Yuwen Y, Wang J, Ling X, Hu Z et al. 2015. A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana benthamiana and Nicotiana tabacum. . Eur. J. Plant Pathol. 142:4715–29
    [Google Scholar]
  257. 257.
    Zhang L, Davies LJ, Elling AA. 2015. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity inplanta. Mol. Plant Pathol. 16:48–60
    [Google Scholar]
  258. 258.
    Zhang L, Gleason C. 2020. Enhancing potato resistance against root-knot nematodes using a plant-defence elicitor delivered by bacteria. Nat. Plants 6:625–29
    [Google Scholar]
  259. 259.
    Zhang L, Gleason C. 2021. Transcriptome analyses of pre-parasitic and parasitic Meloidogyne chitwoodi race 1 to identify putative effector genes. J. Nematol. 53:e2021–84
    [Google Scholar]
  260. 260.
    Zhang L, Zhang F, Melotto M, Yao J, He SY. 2017. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68:1371–85
    [Google Scholar]
  261. 261.
    Zhang X, Peng H, Zhu S, Xing J, Li X et al. 2020. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol. Plant 13:1434–54
    [Google Scholar]
  262. 262.
    Zhao J, Li L, Liu Q, Liu P, Li S et al. 2019. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 70:5943–58
    [Google Scholar]
  263. 263.
    Zhao J, Sun Q, Quentin M, Ling J, Abad P et al. 2021. A Meloidogyne incognita C-type lectin effector targets plant catalases to promote parasitism. New Phytol 232:52124–37
    [Google Scholar]
  264. 264.
    Zhao W, Li Z, Fan J, Hu C, Yang R et al. 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 66:4653–67
    [Google Scholar]
  265. 265.
    Zhou JM, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell 181:978–89
    [Google Scholar]
  266. 266.
    Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q et al. 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177:942–56.e14
    [Google Scholar]
  267. 267.
    Zhou X, Liu J, Bao S, Yang Y, Zhuang Y 2018. Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to Meloidogyne incognita. . Int. J. Mol. Sci 19:583
    [Google Scholar]
  268. 268.
    Zhuo K, Chen J, Lin B, Wang J, Sun F et al. 2017. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol. Plant Pathol. 18:45–54
    [Google Scholar]
  269. 269.
    Zhuo K, Naalden D, Nowak S, Xuan Huy N, Bauters L, Gheysen G 2019. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism. Mol. Plant Pathol. 20:346–55
    [Google Scholar]
  270. 270.
    Zipfel C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:414–20
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-120943
Loading
/content/journals/10.1146/annurev-phyto-021621-120943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error