1932

Abstract

Two-dimensional organic–inorganic hybrid perovskites (2DHPs) consist of alternating anionic metal-halide and cationic organic layers. They have widely tunable structural and optical properties. We review the role of the organic cation in defining the structural and optical properties of 2DHPs through the example of lead iodide 2DHPs. Even though excitons reside in the metal-halide layers, the organic and inorganic frameworks cannot be separated—they must be considered as a single unit to fully understand the photophysics of 2DHPs. We correlate cation-induced distortion and disorder in the inorganic lattice with the resulting optical properties. We also discuss the role of the cation in creating and altering the discrete excitonic structure that appears at cryogenic temperatures in some 2DHPs, including the cation-dependent presence of hot-exciton photoluminescence. We conclude our review with an outlook for 2DHPs, highlighting existing gaps in fundamental knowledge as well as potential future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082820-015402
2022-04-20
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082820-015402.html?itemId=/content/journals/10.1146/annurev-physchem-082820-015402&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kittel C. 2005. Introduction to Solid State Physics Hoboken, NJ: Wiley, 8th ed..
  2. 2. 
    Pankove JI. 1975. Optical Processes in Semiconductors. Dover Books Explain. Sci, Vol. 119 New York: Dover Publ.
  3. 3. 
    Sze SM, Ng KK. 2007. Physics of Semiconductor Devices Hoboken, NJ: Wiley-Intersci, 3rd ed..
  4. 4. 
    Pope M, Swenberg CE. 1999. Electronic Processes in Organic Crystals and Polymers New York: Oxford Univ. Press, 2nd ed..
  5. 5. 
    Murray CB, Kagan CR, Bawendi MG. 2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30:545–610
    [Google Scholar]
  6. 6. 
    Kagan CR, Lifshitz E, Sargent EH, Talapin DV. 2016. Building devices from colloidal quantum dots. Science 353:6302science.aac5523
    [Google Scholar]
  7. 7. 
    Saparov B, Mitzi DB. 2016. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116:74558–96
    [Google Scholar]
  8. 8. 
    Straus DB, Kagan CR. 2018. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 9:61434–47
    [Google Scholar]
  9. 9. 
    Momma K, Izumi F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44:61272–76
    [Google Scholar]
  10. 10. 
    Møller C. 1958. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182:46471436
    [Google Scholar]
  11. 11. 
    Wells HL. 1893. Über die Cäsium- und Kalium-Bleihalogenide [About the cesium and potassium lead halides. ]. Z. Anorg. Chem. 3:1195–210
    [Google Scholar]
  12. 12. 
    Mitchell RH. 2002. Perovskites: Modern and Ancient Thunder Bay, Can: Almaz Press
  13. 13. 
    Goldschmidt VM. 1926. Die Gesetze der Krystallochemie [The laws of crystal chemistry]. Naturwissenschaften 14:21477–85
    [Google Scholar]
  14. 14. 
    Goldschmidt VM. 1929. Crystal structure and chemical constitution. Trans. Faraday Soc. 25:253
    [Google Scholar]
  15. 15. 
    Filip MR, Giustino F 2018. The geometric blueprint of perovskites. PNAS 115:215397–402
    [Google Scholar]
  16. 16. 
    Hellenbrandt M. 2004. The Inorganic Crystal Structure Database (ICSD)—present and future. Crystallogr. Rev. 10:117–22
    [Google Scholar]
  17. 17. 
    Straus DB, Guo S, Abeykoon AM, Cava RJ. 2020. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 32:322001069
    [Google Scholar]
  18. 18. 
    Weber D 1979. Das Perowskitsystem CH3NH3 [Pb,Sn1-n X3] (X = Cl, Br, I) /The perovskite system CH3NH3 [Pb,Sn1-n X3] (X = C1, Br, I). Z. Naturforsch. B 34:7939–41
    [Google Scholar]
  19. 19. 
    Weber D. 1978. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur /CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33:121443–45
    [Google Scholar]
  20. 20. 
    Kojima A, Teshima K, Shirai Y, Miyasaka T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131:176050–51
    [Google Scholar]
  21. 21. 
    Green MA, Ho-Baillie A, Snaith HJ 2014. The emergence of perovskite solar cells. Nat. Photon. 8:7506–14
    [Google Scholar]
  22. 22. 
    Natl. Renew. Energy Lab 2018. Best research-cell efficiencies. National Renewable Energy Laboratory. http://www.nrel.gov/pv/assets/images/efficiency-chart.png
    [Google Scholar]
  23. 23. 
    Mitzi DB, Feild CA, Harrison WTA, Guloy AM 1994. Conducting tin halides with a layered organic-based perovskite structure. Nature 369:6480467–69
    [Google Scholar]
  24. 24. 
    Mitzi DB. 1999. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Progress in Inorganic ChemistryVol. 48ed. KD Karlinpp. 1121 Hoboken, NJ: Wiley
    [Google Scholar]
  25. 25. 
    McNulty JA, Lightfoot P. 2021. Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCrJ 8:4485–513
    [Google Scholar]
  26. 26. 
    Tremblay M-H, Bacsa J, Zhao B, Pulvirenti F, Barlow S, Marder SR 2019. Structures of (4-Y-C6H4CH2NH3)2PbI4 {Y = H, F, Cl, Br, I}: tuning of hybrid organic inorganic perovskite structures from Ruddlesden–Popper to Dion–Jacobson limits. Chem. Mater. 31:166145–53
    [Google Scholar]
  27. 27. 
    Mitzi DB. 1996. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8:3791–800
    [Google Scholar]
  28. 28. 
    Mauck CM, Tisdale WA. 2019. Excitons in 2D organic-inorganic halide perovskites. Trends Chem 1:4380–93
    [Google Scholar]
  29. 29. 
    Hoffmann R. 1987. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26:9846–78
    [Google Scholar]
  30. 30. 
    Pierret RF. 2003. Advanced Semiconductor Fundamentals Upper Saddle River, NJ: Prentice Hall, 2nd ed..
  31. 31. 
    Even J, Pedesseau L, Katan C. 2014. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. Chem. Phys. Chem. 15:173733–41
    [Google Scholar]
  32. 32. 
    Gebhardt J, Kim Y, Rappe AM 2017. Influence of the dimensionality and organic cation on crystal and electronic structure of organometallic halide perovskites. J. Phys. Chem. C 121:126569–74
    [Google Scholar]
  33. 33. 
    Even J, Pedesseau L, Dupertuis M-A, Jancu J-M, Katan C. 2012. Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys. Rev. B 86:20205301
    [Google Scholar]
  34. 34. 
    Mitzi DB, Chondroudis K, Kagan CR. 2001. Organic-inorganic electronics. IBM J. Res. Dev. 45:129–45
    [Google Scholar]
  35. 35. 
    Pedesseau L, Sapori D, Traore B, Robles R, Fang H-H et al. 2016. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10:119776–86
    [Google Scholar]
  36. 36. 
    Smith MD, Pedesseau L, Kepenekian M, Smith IC, Katan C et al. 2017. Decreasing the electronic confinement in layered perovskites through intercalation. Chem. Sci. 8:31960–68
    [Google Scholar]
  37. 37. 
    Straus DB, Iotov N, Gau MR, Zhao Q, Carroll PJ, Kagan CR 2019. Longer cations increase energetic disorder in excitonic 2D hybrid perovskites. J. Phys. Chem. Lett. 10:61198–205
    [Google Scholar]
  38. 38. 
    Katan C, Mercier N, Even J. 2019. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119:53140–92
    [Google Scholar]
  39. 39. 
    Keldysh LV. 1979. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett 29:11658–61
    [Google Scholar]
  40. 40. 
    Tanaka K, Takahashi T, Kondo T, Umebayashi T, Asai K, Ema K 2005. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71:4045312
    [Google Scholar]
  41. 41. 
    Hanamura E, Nagaosa N, Kumagai M, Takagahara T. 1988. Quantum wells with enhanced exciton effects and optical non-linearity. Mater. Sci. Eng. B 1:3–4255–58
    [Google Scholar]
  42. 42. 
    Raja A, Chaves A, Yu J, Arefe G, Hill HM et al. 2017. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8:15251
    [Google Scholar]
  43. 43. 
    Sutton RJ, Filip MR, Haghighirad AA, Sakai N, Wenger B et al. 2018. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3:81787–94
    [Google Scholar]
  44. 44. 
    Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O et al. 2016. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9:3962–70
    [Google Scholar]
  45. 45. 
    Pedesseau L, Jancu JM, Rolland A, Deleporte E, Katan C, Even J. 2014. Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications. Opt. Quantum Electron. 46:101225–32
    [Google Scholar]
  46. 46. 
    Hong X, Ishihara T, Nurmikko AV. 1992. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45:126961–64
    [Google Scholar]
  47. 47. 
    Ishihara T, Takahashi J, Goto T. 1990. Optical properties due to electronic transitions in two-dimensional semiconductors (ACnH2n+1NH3)2PbI4. Phys. Rev. B 42:1711099–107
    [Google Scholar]
  48. 48. 
    Mathieu H, Lefebvre P, Christol P. 1992. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B 46:74092–101
    [Google Scholar]
  49. 49. 
    Esaki L, Tsu R. 1970. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14:161–65
    [Google Scholar]
  50. 50. 
    Even J, Pedesseau L, Katan C, Kepenekian M, Lauret J-S et al. 2015. Solid state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119:1910161–77
    [Google Scholar]
  51. 51. 
    Knutson JL, Martin JD, Mitzi DB 2005. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44:134699–705
    [Google Scholar]
  52. 52. 
    Straus DB, Hurtado Parra S, Iotov N, Gebhardt J, Rappe AM et al. 2016. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc. 138:4213798–801
    [Google Scholar]
  53. 53. 
    Lin CW, Liu F, Chen TY, Lee KH, Chang CK et al. 2020. Structure-dependent photoluminescence in low-dimensional ethylammonium, propylammonium, and butylammonium lead iodide perovskites. ACS Appl. Mater. Interfaces 12:45008–16
    [Google Scholar]
  54. 54. 
    Im J, Chung J, Kim S, Park N 2012. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res. Lett. 7:1353
    [Google Scholar]
  55. 55. 
    Sourisseau S, Louvain N, Bi W, Mercier N, Rondeau D et al. 2007. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic−inorganic interface. Chem. Mater. 19:3600–7
    [Google Scholar]
  56. 56. 
    Yaffe O, Chernikov A, Norman ZM, Zhong Y, Velauthapillai A et al. 2015. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 92:4045414
    [Google Scholar]
  57. 57. 
    Mao L, Ke W, Pedesseau L, Wu Y, Katan C et al. 2018. Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140:103775–83
    [Google Scholar]
  58. 58. 
    Li Y, Milić JV, Ummadisingu A, Seo JY, Im JH et al. 2019. Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells. Nano Lett 19:1150–57
    [Google Scholar]
  59. 59. 
    Straus DB, Hurtado Parra S, Iotov N, Zhao Q, Gau MR et al. 2020. Tailoring hot exciton dynamics in 2D hybrid perovskites through cation modification. ACS Nano 14:33621–29
    [Google Scholar]
  60. 60. 
    Tremblay M-H, Bacsa J, Barlow S, Marder SR. 2020. Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Mater. Chem. Front. 4:72023–28
    [Google Scholar]
  61. 61. 
    Papavassiliou GC, Mousdis GA, Raptopoulou CP, Terzis A. 1999. Preparation and characterization of [C6H5CH2NH3]2PbI4, [C6H5CH2CH2SC(NH2)2]3PbI5 and [C10H7CH2NH3]PbI3 organic-inorganic hybrid compounds. Z. Naturforsch. B 54:111405–9
    [Google Scholar]
  62. 62. 
    Hu J, Oswald IWH, Stuard SJ, Nahid MM, Zhou N et al. 2019. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10:1276
    [Google Scholar]
  63. 63. 
    Billing DG, Lemmerer A. 2007. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+ 1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr. Sect. B 63:5735–47
    [Google Scholar]
  64. 64. 
    Lemmerer A, Billing DG. 2012. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9 and 10. Dalt. Trans. 41:41146–57
    [Google Scholar]
  65. 65. 
    Mauck CM, France-Lanord A, Hernandez Oendra AC, Dahod NS, Grossman JC, Tisdale WA 2019. Inorganic cage motion dominates excited-state dynamics in 2D-layered perovskites (CxH2x+1NH3)2PbI4 (x = 4–9). J. Phys. Chem. C 123:4527904–16
    [Google Scholar]
  66. 66. 
    Alvarez S. 2013. A cartography of the van der Waals territories. Dalt. Trans. 42:248617–36
    [Google Scholar]
  67. 67. 
    Du K-Z, Tu Q, Zhang X, Han Q, Liu J et al. 2017. Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56:159291–302
    [Google Scholar]
  68. 68. 
    Billing DG, Lemmerer A. 2006. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8:9686–95
    [Google Scholar]
  69. 69. 
    Long G, Sabatini R, Saidaminov MI, Lakhwani G, Rasmita A et al. 2020. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5:6423–39
    [Google Scholar]
  70. 70. 
    Ahn J, Lee E, Tan J, Yang W, Kim B, Moon J 2017. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater. Horizons 4:5851–56
    [Google Scholar]
  71. 71. 
    Wang L, Xue Y, Cui M, Huang Y, Xu H et al. 2020. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59:166442–50
    [Google Scholar]
  72. 72. 
    Lu H, Xiao C, Song R, Li T, Maughan AE et al. 2020. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142:3013030–40
    [Google Scholar]
  73. 73. 
    Ma J, Fang C, Chen C, Jin L, Wang J et al. 2019. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13:33659–65
    [Google Scholar]
  74. 74. 
    Smith MD, Karunadasa HI. 2018. White-light emission from layered halide perovskites. Acc. Chem. Res. 51:3619–27
    [Google Scholar]
  75. 75. 
    Song KS, Williams RT 1993. Self-Trapped Excitons Springer Ser. Solid-State Sci. , Vol. 105 Berlin, Heidelberg: Springer-Verlag
  76. 76. 
    Kahmann S, Tekelenburg EK, Duim H, Kamminga ME, Loi MA. 2020. Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites. Nat. Commun. 11:2344
    [Google Scholar]
  77. 77. 
    Wang X, Meng W, Liao W, Wang J, Xiong R-G, Yan Y 2019. Atomistic mechanism of broadband emission in metal halide perovskites. J. Phys. Chem. Lett. 10:3501–6
    [Google Scholar]
  78. 78. 
    Ravindra NM, Auluck S, Srivastava VK 1979. Temperature dependence of the energy gap in PbS, PbSe, and PbTe. Phys. Status Solidi 52:2K151–55
    [Google Scholar]
  79. 79. 
    Singh S, Li C, Panzer F, Narasimhan KL, Graeser A et al. 2016. Effect of thermal and structural disorder on the electronic structure of hybrid perovskite semiconductor CH3NH3PbI3. J. Phys. Chem. Lett. 7:153014–21
    [Google Scholar]
  80. 80. 
    Trots DM, Myagkota SV. 2008. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 69:102520–26
    [Google Scholar]
  81. 81. 
    Chemla D, Miller D, Smith P, Gossard A, Wiegmann W 1984. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE J. Quantum Electron. 20:3265–75
    [Google Scholar]
  82. 82. 
    Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA et al. 2016. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7:11755
    [Google Scholar]
  83. 83. 
    Neutzner S, Thouin F, Cortecchia D, Petrozza A, Silva C, Srimath Kandada AR. 2018. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2:6064605
    [Google Scholar]
  84. 84. 
    Dammak T, Koubaa M, Boukheddaden K, Bougzhala H, Mlayah A, Abid Y 2009. Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial. J. Phys. Chem. C 113:4419305–9
    [Google Scholar]
  85. 85. 
    Kaiser M, Li Y, Schwenzer J, Jakoby M, Allegro I et al. 2021. How free exciton-exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures. J. Appl. Phys. 129:12123101
    [Google Scholar]
  86. 86. 
    Gauthron K, Lauret J-S, Doyennette L, Lanty G, Al Choueiry A et al. 2010. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 18:65912
    [Google Scholar]
  87. 87. 
    Demchenko AP, Tomin VI, Chou P-T. 2017. Breaking the Kasha rule for more efficient photochemistry. Chem. Rev. 117:2113353–81
    [Google Scholar]
  88. 88. 
    Fang H-H, Yang J, Adjokatse S, Tekelenburg E, Kamminga ME et al. 2020. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater. 30:61907979
    [Google Scholar]
  89. 89. 
    Thouin F, Neutzner S, Cortecchia D, Dragomir VA, Soci C et al. 2018. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2:3034001
    [Google Scholar]
  90. 90. 
    Thouin F, Srimath Kandada AR, Valverde-Chávez DA, Cortecchia D, Bargigia I et al. 2019. Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites. Chem. Mater. 31:177085–91
    [Google Scholar]
  91. 91. 
    Tekelenburg EK, Kahmann S, Kamminga ME, Blake GR, Loi MA. 2021. Elucidating the structure and photophysics of layered perovskites through cation fluorination. Adv. Opt. Mater. 9:182001647
    [Google Scholar]
  92. 92. 
    Urban JM, Chehade G, Dyksik M, Menahem M, Surrente A et al. 2020. Revealing excitonic phonon coupling in (PEA)2(MA)n−1PbnI3n+1 2D layered perovskites. J. Phys. Chem. Lett. 11:155830–35
    [Google Scholar]
  93. 93. 
    Srimath Kandada AR, Silva C 2020. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11:93173–84
    [Google Scholar]
  94. 94. 
    de Jong M, Seijo L, Meijerink A, Rabouw FT 2015. Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter. Phys. Chem. Chem. Phys. 17:2616959–69
    [Google Scholar]
  95. 95. 
    Gaynor JD, Khalil M. 2017. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies. J. Chem. Phys. 147:9094202
    [Google Scholar]
  96. 96. 
    Guzelturk B, Winkler T, Van de Goor TWJ, Smith MD, Bourelle SA et al. 2021. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20:5618–23
    [Google Scholar]
  97. 97. 
    Wu X, Tan LZ, Shen X, Hu T, Miyata K et al. 2017. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci. Adv. 3:7sciadv.1602388
    [Google Scholar]
  98. 98. 
    Thouin F, Valverde-Chávez DA, Quarti C, Cortecchia D, Bargigia I et al. 2019. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18:4349–56
    [Google Scholar]
  99. 99. 
    Kagan CR, Mitzi DB, Dimitrakopoulos CD 1999. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:5441945–47
    [Google Scholar]
  100. 100. 
    Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. 2007. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19:121551–66
    [Google Scholar]
  101. 101. 
    Hoppe H, Sariciftci NS. 2004. Organic solar cells: an overview. J. Mater. Res. 19:71924–45
    [Google Scholar]
  102. 102. 
    Era M, Morimoto S, Tsutsui T, Saito S. 1994. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65:6676–78
    [Google Scholar]
  103. 103. 
    Hattori T, Taira T, Era M, Tsutsui T, Saito S 1996. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem. Phys. Lett. 254:1–2103–8
    [Google Scholar]
  104. 104. 
    Dohner ER, Jaffe A, Bradshaw LR, Karunadasa HI. 2014. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136:3813154–57
    [Google Scholar]
  105. 105. 
    Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM. 2014. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 5:81300–6
    [Google Scholar]
  106. 106. 
    Ishihara T, Hong X, Ding J, Nurmikko AV 1992. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 267:1–3323–26
    [Google Scholar]
  107. 107. 
    Mitzi DB, Chondroudis K, Kagan CR 1999. Design, structure, and optical properties of organic−inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38:266246–56
    [Google Scholar]
  108. 108. 
    Blancon J-C, Tsai H, Nie W, Stoumpos CC, Pedesseau L et al. 2017. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355:63311288–92
    [Google Scholar]
  109. 109. 
    Zhu H, Miyata K, Fu Y, Wang J, Joshi PP et al. 2016. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353:63061409–13
    [Google Scholar]
  110. 110. 
    Permogorov S. 1975. Hot excitons in semiconductors. Phys. Status Solidi 68:19–42
    [Google Scholar]
  111. 111. 
    Singh J. 1994. Quantum-well perfection requirements for large-scale applications of exciton-base devices. IEEE J. Quantum Electron. 30:4893–98
    [Google Scholar]
  112. 112. 
    Wagner RW, Lindsey JS. 1994. A molecular photonic wire. J. Am. Chem. Soc. 116:219759–60
    [Google Scholar]
  113. 113. 
    Lanty G, Bréhier A, Parashkov R, Lauret JS, Deleporte E. 2008. Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys. 10:6065007
    [Google Scholar]
  114. 114. 
    Byrnes T, Kim NY, Yamamoto Y. 2014. Exciton-polariton condensates. Nat. Phys. 10:11803–13
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082820-015402
Loading
/content/journals/10.1146/annurev-physchem-082820-015402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error