1932

Abstract

In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-061121-040148
2022-02-10
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-061121-040148.html?itemId=/content/journals/10.1146/annurev-physiol-061121-040148&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Johnson EA, Sommer JR 1967. A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol. 33:103–29
    [Google Scholar]
  2. 2. 
    Soeller C, Cannell MB. 1999. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ. Res. 84:266–75
    [Google Scholar]
  3. 3. 
    Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A. 2013. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ. Res. 113:1219–30
    [Google Scholar]
  4. 4. 
    Hong T, Yang H, Zhang S-S, Cho HC, Kalashnikova M et al. 2014. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat. Med. 20:624–32
    [Google Scholar]
  5. 5. 
    Rog-Zielinska EA, Scardigli M, Peyronnet R, Zgierski-Johnston CM, Greiner J et al. 2021. Beat-by-beat cardiomyocyte T-tubule deformation drives tubular content exchange. Circ. Res. 128:203–15
    [Google Scholar]
  6. 6. 
    Lenaerts I, Bito V, Heinzel FR, Driesen RB, Holemans P et al. 2009. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ. Res. 105:876–85
    [Google Scholar]
  7. 7. 
    Dibb KM, Clarke JD, Horn MA, Richards MA, Graham HK et al. 2009. Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ. Heart Fail. 2:482–89
    [Google Scholar]
  8. 8. 
    Frisk M, Koivumaki JT, Norseng PA, Maleckar MM, Sejersted OM, Louch WE. 2014. Variable t-tubule organization and Ca2+ homeostasis across the atria. Am. J. Physiol. Heart Circ. Physiol. 307:H609–20
    [Google Scholar]
  9. 9. 
    Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD 2010. Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium 47:210–23
    [Google Scholar]
  10. 10. 
    Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ. 2010. Excitation-contraction coupling changes during postnatal cardiac development. J. Mol. Cell. Cardiol. 48:379–86
    [Google Scholar]
  11. 11. 
    Munro ML, Soeller C. 2016. Early transverse tubule development begins in utero in the sheep heart. J. Muscle Res. Cell Motil. 37:195–202
    [Google Scholar]
  12. 12. 
    Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C. 1995. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J. Cell Biol. 129:659–71
    [Google Scholar]
  13. 13. 
    Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K. 2000. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6:11–22
    [Google Scholar]
  14. 14. 
    Louch WE, Mørk HK, Sexton J, Strømme TA, Laake P et al. 2006. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J. Physiol. 574:519–33
    [Google Scholar]
  15. 15. 
    Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H. 2006. Orphaned ryanodine receptors in the failing heart. PNAS 103:4305–10
    [Google Scholar]
  16. 16. 
    Heinzel FR, Bito V, Biesmans L, Wu M, Detre E et al. 2008. Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ. Res. 102:338–46
    [Google Scholar]
  17. 17. 
    Kirk MM, Izu LT, Chen-Izu Y, McCulle SL, Wier WG et al. 2003. Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J. Physiol. 547:441–51
    [Google Scholar]
  18. 18. 
    Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE et al. 2005. Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc. Res. 65:221–29
    [Google Scholar]
  19. 19. 
    Walden AP, Dibb KM, Trafford AW. 2009. Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J. Mol. Cell. Cardiol. 46:463–73
    [Google Scholar]
  20. 20. 
    Urthaler F, Walker AA, Kawamura K, Hefner LL, James TN. 1978. Canine atrial and ventricular muscle mechanics studied as a function of age. Circ. Res. 42:703–13
    [Google Scholar]
  21. 21. 
    Brette F, Komukai K, Orchard CH 2002. Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 283:H1720–28
    [Google Scholar]
  22. 22. 
    Bourcier A, Barthe M, Bedioune I, Lechêne P, Miled HB et al. 2019. Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Exp. Physiol. 104:1237–49
    [Google Scholar]
  23. 23. 
    Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B et al. 2018. Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc. Res. 114:1512–24
    [Google Scholar]
  24. 24. 
    Shen X, van den Brink J, Hou Y, Colli D, Le C et al. 2019. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes. J. Physiol. 597:399–418
    [Google Scholar]
  25. 25. 
    Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM et al. 2010. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLOS Biol 8:e1000312
    [Google Scholar]
  26. 26. 
    Gross P, Johnson J, Romero CM, Eaton DM, Poulet C et al. 2021. Interaction of the joining region in junctophilin-2 with the L-type Ca2+ channel is pivotal for cardiac dyad assembly and intracellular Ca2+ dynamics. Circ. Res. 128:92–114Demonstrates how JPH2 links the LTCC and RyR in the cardiac dyad to regulate function.
    [Google Scholar]
  27. 27. 
    Dixon RE, Yuan C, Cheng EP, Navedo MF, Santana LF. 2012. Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. PNAS 109:1749–54
    [Google Scholar]
  28. 28. 
    Kamp TJ, Hell JW. 2000. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res 87:1095–102
    [Google Scholar]
  29. 29. 
    Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D et al. 2020. Mechanism of adrenergic Cav1.2 stimulation revealed by proximity proteomics. Nature 577:695–700
    [Google Scholar]
  30. 30. 
    Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. 2009. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. PNAS 106:22275–80
    [Google Scholar]
  31. 31. 
    Jayasinghe I, Clowsley AH, Lin R, Lutz T, Harrison C et al. 2018. True molecular scale visualization of variable clustering properties of ryanodine receptors. Cell Rep 22:557–67
    [Google Scholar]
  32. 32. 
    Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA et al. 2016. Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation 133:388–97
    [Google Scholar]
  33. 33. 
    Hiess F, Detampel P, Nolla-Colomer C, Vallmitjana A, Ganguly A et al. 2018. Dynamic and irregular distribution of RyR2 clusters in the periphery of live ventricular myocytes. Biophys. J. 114:343–54
    [Google Scholar]
  34. 34. 
    Asghari P, Scriven DR, Ng M, Panwar P, Chou KC et al. 2020. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. eLife 9:e51602Shows the dynamic regulation of RyR cluster size in response to changes in the cellular environment.
    [Google Scholar]
  35. 35. 
    Beavers DL, Wang W, Ather S, Voigt N, Garbino A et al. 2013. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J. Am. Coll. Cardiol. 62:2010–19
    [Google Scholar]
  36. 36. 
    Despa S, Brette F, Orchard CH, Bers DM. 2003. Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys. J. 85:3388–96
    [Google Scholar]
  37. 37. 
    Chase A, Orchard CH 2011. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. J. Mol. Cell. Cardiol. 50:187–93
    [Google Scholar]
  38. 38. 
    Ozdemir S, Bito V, Holemans P, Vinet L, Mercadier JJ et al. 2008. Pharmacological inhibition of Na/Ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ. Res. 102:1398–405
    [Google Scholar]
  39. 39. 
    Tanaka H, Namekata I, Takeda K, Kazama A, Shimizu Y et al. 2005. Unique excitation-contraction characteristics of mouse myocardium as revealed by SEA0400, a specific inhibitor of Na+-Ca2+ exchanger. Naunyn-Schmiedeberg's Arch. Pharmacol. 371:526–34
    [Google Scholar]
  40. 40. 
    Swift F, Franzini-Armstrong C, Øyehaug L, Enger UH, Andersson KB et al. 2012. Extreme sarcoplasmic reticulum volume loss and compensatory T-tubule remodeling following Serca2 knockout. PNAS 109:3997–4001
    [Google Scholar]
  41. 41. 
    Jayasinghe ID, Cannell MB, Soeller C. 2009. Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys. J. 97:2664–73
    [Google Scholar]
  42. 42. 
    Biesmans L, Macquaide N, Heinzel FR, Bito V, Smith GL, Sipido KR. 2011. Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density. PLOS ONE 6:e25100
    [Google Scholar]
  43. 43. 
    Sipido KR, Maes M, Van de Werf F. 1997. Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na+-Ca2+ exchange. Circ. Res. 81:1034–44
    [Google Scholar]
  44. 44. 
    Thomas MJ, Sjaastad I, Andersen K, Helm PJ, Wasserstrom JA et al. 2003. Localization and function of the Na+/Ca2+-exchanger in normal and detubulated rat cardiomyocytes. J. Mol. Cell. Cardiol. 35:1325–37
    [Google Scholar]
  45. 45. 
    Swift F, Birkeland JA, Tovsrud N, Enger UH, Aronsen JM et al. 2008. Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase α2-isoform in heart failure. Cardiovasc. Res. 78:71–78
    [Google Scholar]
  46. 46. 
    Belardinelli L, Shryock JC, Fraser H. 2006. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 92:Suppl. 4iv6–14
    [Google Scholar]
  47. 47. 
    Swift F, Tovsrud N, Enger UH, Sjaastad I, Sejersted OM 2007. The Na+/K+-ATPase α2-isoform regulates cardiac contractility in rat cardiomyocytes. Cardiovasc. Res. 75:109–17
    [Google Scholar]
  48. 48. 
    Tazmini K, Frisk M, Lewalle A, Laasmaa M, Morotti S et al. 2020. Hypokalemia promotes arrhythmia by distinct mechanisms in atrial and ventricular myocytes. Circ. Res. 126:889–906
    [Google Scholar]
  49. 49. 
    Haddock PS, Coetzee WA, Cho E, Porter L, Katoh H et al. 1999. Subcellular [Ca2+]i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes. Circ. Res. 85:415–27
    [Google Scholar]
  50. 50. 
    Kemi OJ, Hoydal MA, Macquaide N, Haram PM, Koch LG et al. 2011. The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts. J. Cell. Physiol. 226:2235–43
    [Google Scholar]
  51. 51. 
    Kong CHT, Bryant SM, Watson JJ, Gadeberg HC, Roth DM et al. 2018. The effects of aging on the regulation of T-tubular ICa by caveolin in mouse ventricular myocytes. J. Gerontol. A Biol. Sci. Med. Sci. 73:711–19
    [Google Scholar]
  52. 52. 
    Wei S, Guo A, Chen B, Kutschke W, Xie YP et al. 2010. T-tubule remodeling during transition from hypertrophy to heart failure. Circ. Res. 107:520–31
    [Google Scholar]
  53. 53. 
    Lipsett DB, Frisk M, Aronsen JM, Norden ES, Buonarati OR et al. 2019. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J. Physiol. 597:1833–53
    [Google Scholar]
  54. 54. 
    Kim HD, Kim DJ, Lee IJ, Rah BJ, Sawa Y, Schaper J. 1992. Human fetal heart development after mid-term: morphometry and ultrastructural study. J. Mol. Cell. Cardiol. 24:949–65
    [Google Scholar]
  55. 55. 
    Cohen NM, Lederer WJ. 1988. Changes in the calcium current of rat heart ventricular myocytes during development. J. Physiol. 406:115–46
    [Google Scholar]
  56. 56. 
    Huynh TV, Chen F, Wetzel GT, Friedman WF, Klitzner TS. 1992. Developmental changes in membrane Ca2+ and K+ currents in fetal, neonatal, and adult rabbit ventricular myocytes. Circ. Res. 70:508–15
    [Google Scholar]
  57. 57. 
    Huang J, Xu L, Thomas M, Whitaker K, Hove-Madsen L, Tibbits GF. 2006. L-type Ca2+ channel function and expression in neonatal rabbit ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 290:H2267–76
    [Google Scholar]
  58. 58. 
    Sedarat F, Xu L, Moore ED, Tibbits GF 2000. Colocalization of dihydropyridine and ryanodine receptors in neonate rabbit heart using confocal microscopy. Am. J. Physiol. Heart Circ. Physiol. 279:H202–9
    [Google Scholar]
  59. 59. 
    Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T et al. 2003. Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc. Res. 58:535–48
    [Google Scholar]
  60. 60. 
    Wibo M, Bravo G, Godfraind T. 1991. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ. Res. 68:662–73
    [Google Scholar]
  61. 61. 
    Ishikawa H. 1968. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J. Cell Biol. 38:51–66
    [Google Scholar]
  62. 62. 
    Parton RG, Way M, Zorzi N, Stang E 1997. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136:137–54
    [Google Scholar]
  63. 63. 
    Hall TE, Martel N, Ariotti N, Xiong Z, Lo HP et al. 2020. In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nat. Commun. 11:3711Proposes a novel method (endocytic capture) for t-tubule formation in skeletal muscle.
    [Google Scholar]
  64. 64. 
    Schiaffino S, Cantini M, Sartore S 1977. T-system formation in cultured rat skeletal tissue. Tissue Cell 9:437–46
    [Google Scholar]
  65. 65. 
    Di Maio A, Karko K, Snopko RM, Mejia-Alvarez R, Franzini-Armstrong C. 2007. T-tubule formation in cardiacmyocytes: Two possible mechanisms?. J. Muscle Res. Cell Motil. 28:231–41
    [Google Scholar]
  66. 66. 
    Takekura H, Flucher BE, Franzini-Armstrong C. 2001. Sequential docking, molecular differentiation, and positioning of T-tubule/SR junctions in developing mouse skeletal muscle. Dev. Biol. 239:204–14
    [Google Scholar]
  67. 67. 
    Fujita N, Huang W, Lin TH, Groulx JF, Jean S et al. 2017. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. eLife 6:e23367
    [Google Scholar]
  68. 68. 
    Seidel T, Fiegle DJ, Baur TJ, Ritzer A, Nay S et al. 2019. Glucocorticoids preserve the t-tubular system in ventricular cardiomyocytes by upregulation of autophagic flux. Basic Res. Cardiol. 114:47
    [Google Scholar]
  69. 69. 
    Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C et al. 2001. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem. 276:21425–33
    [Google Scholar]
  70. 70. 
    Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, Roth DM et al. 2018. Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular ICa density in mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 315:H1101–11
    [Google Scholar]
  71. 71. 
    Chen B, Guo A, Zhang C, Chen R, Zhu Y et al. 2013. Critical roles of junctophilin-2 in T-tubule and excitation-contraction coupling maturation during postnatal development. Cardiovasc. Res. 100:54–62
    [Google Scholar]
  72. 72. 
    Reynolds JO, Chiang DY, Wang W, Beavers DL, Dixit SS et al. 2013. Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc. Res. 100:44–53
    [Google Scholar]
  73. 73. 
    Guo Y, VanDusen NJ, Zhang L, Gu W, Sethi I et al. 2017. Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo. Circ. Res. 120:1874–88
    [Google Scholar]
  74. 74. 
    Klinge L, Harris J, Sewry C, Charlton R, Anderson L et al. 2010. Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve 41:166–73
    [Google Scholar]
  75. 75. 
    Hofhuis J, Bersch K, Bussenschutt R, Drzymalski M, Liebetanz D et al. 2017. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J. Cell Sci. 130:841–52
    [Google Scholar]
  76. 76. 
    Demonbreun AR, Rossi AE, Alvarez MG, Swanson KE, Deveaux HK et al. 2014. Dysferlin and myoferlin regulate transverse tubule formation and glycerol sensitivity. Am. J. Pathol. 184:248–59
    [Google Scholar]
  77. 77. 
    Hofhuis J, Bersch K, Wagner S, Molina C, Fakuade FE et al. 2020. Dysferlin links excitation-contraction coupling to structure and maintenance of the cardiac transverse-axial tubule system. Europace 22:1119–31
    [Google Scholar]
  78. 78. 
    Ampong BN, Imamura M, Matsumiya T, Yoshida M, Takeda S 2005. Intracellular localization of dysferlin and its association with the dihydropyridine receptor. Acta Myol 24:134–44
    [Google Scholar]
  79. 79. 
    Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA et al. 2002. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–96
    [Google Scholar]
  80. 80. 
    Lawless M, Caldwell JL, Radcliffe EJ, Smith CER, Madders GWP et al. 2019. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Sci. Rep. 9:6801
    [Google Scholar]
  81. 81. 
    Muller AJ, Baker JF, DuHadaway JB, Ge K, Farmer G et al. 2003. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol. Cell. Biol. 23:4295–306
    [Google Scholar]
  82. 82. 
    Posey AD Jr., Swanson KE, Alvarez MG, Krishnan S, Earley JU et al. 2014. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development. Dev. Biol. 387:179–90
    [Google Scholar]
  83. 83. 
    Demonbreun AR, Swanson KE, Rossi AE, Deveaux HK, Earley JU et al. 2015. Eps 15 homology domain (EHD)-1 remodels transverse tubules in skeletal muscle. PLOS ONE 10:e0136679
    [Google Scholar]
  84. 84. 
    Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. 2009. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat. Cell Biol. 11:1399–410
    [Google Scholar]
  85. 85. 
    Feric NT, Radisic M. 2016. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96:110–34
    [Google Scholar]
  86. 86. 
    Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L et al. 2017. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121:1323–30
    [Google Scholar]
  87. 87. 
    Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L et al. 2018. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–43
    [Google Scholar]
  88. 88. 
    Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM 2014. Thyroid hormone action in postnatal heart development. Stem. Cell Res. 13:582–91
    [Google Scholar]
  89. 89. 
    Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ et al. 2015. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α. Cell Death Differ 22:1106–16
    [Google Scholar]
  90. 90. 
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP et al. 2014. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157:795–807
    [Google Scholar]
  91. 91. 
    Louch WE, Bito V, Heinzel FR, Macianskiene R, Vanhaecke J et al. 2004. Reduced synchrony of Ca2+ release with loss of T-tubules—a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc. Res. 62:63–73
    [Google Scholar]
  92. 92. 
    De La Mata A, Tajada S, O'Dwyer S, Matsumoto C, Dixon RE et al. 2019. BIN1 induces the formation of T-tubules and adult-like Ca2+ release units in developing cardiomyocytes. Stem Cells 37:54–64Demonstrates that exogenous BIN1 induces t-tubule formation and LTCC alignment in hESC cardiac myocytes.
    [Google Scholar]
  93. 93. 
    Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ et al. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–99
    [Google Scholar]
  94. 94. 
    Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y et al. 2011. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. 17:720–25
    [Google Scholar]
  95. 95. 
    Li LL, Guo QJ, Lou HY, Liang JH, Yang Y et al. 2020. Nanobar array assay revealed complementary roles of BIN1 splice isoforms in cardiac T-tubule morphogenesis. Nano Lett. 20:6387–95
    [Google Scholar]
  96. 96. 
    Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J et al. 2012. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. PNAS 109:173–78
    [Google Scholar]
  97. 97. 
    Gowrisankaran S, Wang Z, Morgan DG, Milosevic I, Mim C 2020. Cells control BIN1-mediated membrane tubulation by altering the membrane charge. J. Mol. Biol. 432:1235–50
    [Google Scholar]
  98. 98. 
    Daum B, Auerswald A, Gruber T, Hause G, Balbach J et al. 2016. Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane. J. Struct. Biol. 194:375–82
    [Google Scholar]
  99. 99. 
    Kojima C, Hashimoto A, Yabuta I, Hirose M, Hashimoto S et al. 2004. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23:4413–22
    [Google Scholar]
  100. 100. 
    Wu T, Baumgart T. 2014. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry 53:7297–309
    [Google Scholar]
  101. 101. 
    Picas L, Viaud J, Schauer K, Vanni S, Hnia K et al. 2014. BIN1/M-amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat. Commun. 5:5647
    [Google Scholar]
  102. 102. 
    Chin YH, Lee A, Kan HW, Laiman J, Chuang MC et al. 2015. Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to t-tubule fragmentation. Hum. Mol. Genet. 24:5542–54
    [Google Scholar]
  103. 103. 
    Royer B, Hnia K, Gavriilidis C, Tronchere H, Tosch V, Laporte J 2013. The myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies. EMBO Rep 14:907–15
    [Google Scholar]
  104. 104. 
    Gomez-Gonzalez C, Rosas-Alonso R, Rodriguez-Antolin C, Garcia-Guede A, Ibanez de Caceres I et al. 2021. Symptomatic heterozygous X-linked myotubular myopathy female patient with a large deletion at Xq28 and decrease expression of normal allele. Eur. J. Med. Genet. 64:104170
    [Google Scholar]
  105. 105. 
    Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P et al. 2019. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci. Transl. Med. 11:eaav1866
    [Google Scholar]
  106. 106. 
    Kutchukian C, Lo Scrudato M, Tourneur Y, Poulard K, Vignaud A et al. 2016. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice. PNAS 113:14432–37
    [Google Scholar]
  107. 107. 
    Kilfoil PJ, Lotteau S, Zhang R, Yue X, Aynaszyan S et al. 2020. Distinct features of calcium handling and β-adrenergic sensitivity in heart failure with preserved versus reduced ejection fraction. J. Physiol. 598:5091–108
    [Google Scholar]
  108. 108. 
    Frisk M, Le C, Shen X, Roe AT, Hou Y et al. 2021. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 77:405–19Demonstrates distinct differences in t-tubule remodeling on HFpEF and HFrEF using clinical and experimental models.
    [Google Scholar]
  109. 109. 
    Crossman DJ, Young AA, Ruygrok PN, Nason GP, Baddelely D et al. 2015. T-tubule disease: relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy. J. Mol. Cell. Cardiol. 84:170–78
    [Google Scholar]
  110. 110. 
    Shah SJ, Aistrup GL, Gupta DK, O'Toole MJ, Nahhas AF et al. 2014. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure. Am. J. Physiol. Heart Circ. Physiol. 306:H88–100
    [Google Scholar]
  111. 111. 
    Frisk M, Ruud M, Espe EK, Aronsen JM, Roe AT et al. 2016. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovasc. Res. 112:443–51
    [Google Scholar]
  112. 112. 
    Sachse FB, Torres NS, Savio-Galimberti E, Aiba T, Kass DA et al. 2012. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ. Res. 110:588–97
    [Google Scholar]
  113. 113. 
    Xie Y-P, Chen B, Sanders P, Guo A, Li Y et al. 2012. Sildenafil prevents and reverses transverse-tubule remodeling and Ca2+ handling dysfunction in right ventricle failure induced by pulmonary artery hypertension. Hypertension 59:355–62
    [Google Scholar]
  114. 114. 
    Ibrahim M, Navaratnarajah M, Siedlecka U, Rao C, Dias P et al. 2012. Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca2+-induced Ca2+release in a rodent model of heart failure. Eur. J. Heart Fail. 14:571–80
    [Google Scholar]
  115. 115. 
    Kawai M, Hussain M, Orchard CH. 1999. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am. J. Physiol. 277:H603–9
    [Google Scholar]
  116. 116. 
    He J, Conklin MW, Foell JD, Wolff MR, Haworth RA et al. 2001. Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovasc. Res. 49:298–307
    [Google Scholar]
  117. 117. 
    Caldwell JL, Smith CER, Taylor RF, Kitmitto A, Eisner DA et al. 2014. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ. Res. 115:986–96
    [Google Scholar]
  118. 118. 
    Wu H-D, Xu M, Li R-C, Guo L, Lai Y-S et al. 2012. Ultrastructural remodelling of Ca2+ signalling apparatus in failing heart cells. Cardiovasc. Res. 95:430–38
    [Google Scholar]
  119. 119. 
    Gómez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF et al. 1997. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–6
    [Google Scholar]
  120. 120. 
    Kolstad TR, van den Brink J, MacQuaide N, Lunde PK, Frisk M et al. 2018. Ryanodine receptor dispersion disrupts Ca2+ release in failing cardiac myocytes. eLife 7:e39427
    [Google Scholar]
  121. 121. 
    Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GSB et al. 2012. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of t-tubule membrane structures after myocardial infarction. Circ. Res. 111:402–14
    [Google Scholar]
  122. 122. 
    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D et al. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–76
    [Google Scholar]
  123. 123. 
    Galice S, Xie Y, Yang Y, Sato D, Bers DM. 2018. Size matters: ryanodine receptor cluster size affects arrhythmogenic sarcoplasmic reticulum calcium release. J. Am. Heart Assoc. 7:e008724
    [Google Scholar]
  124. 124. 
    Eisner DA, Caldwell JL, Kistamás K, Trafford AW. 2017. Calcium and excitation-contraction coupling in the heart. Circ. Res. 121:181–95
    [Google Scholar]
  125. 125. 
    Terracciano CMN, Harding SE, Adamson D, Koban M, Tansley P et al. 2003. Changes in sarcolemmal Ca entry and sarcoplasmic reticulum Ca content in ventricular myocytes from patients with end-stage heart failure following myocardial recovery after combined pharmacological and ventricular assist device therapy. Eur. Heart J. 24:1329–39
    [Google Scholar]
  126. 126. 
    Briston SJ, Caldwell JL, Horn MA, Clarke JD, Richards MA et al. 2011. Impaired β-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure. J. Physiol. 589:1367–82
    [Google Scholar]
  127. 127. 
    Seidel T, Navankasattusas S, Ahmad AA, Diakos NA, Xu WD et al. 2017. Sheet-like remodeling of the transverse tubular system in human heart failure impairs excitation-contraction coupling and functional recovery by mechanical unloading. Circulation 135:1632–45
    [Google Scholar]
  128. 128. 
    Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L et al. 2017. Post-myocardial infarction t-tubules form enlarged branched structures with dysregulation of junctophilin-2 and bridging integrator 1 (BIN-1). J. Am. Heart Assoc. 6:e0044834
    [Google Scholar]
  129. 129. 
    Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM et al. 2014. Defects in t-tubular electrical activity underlie local alterations of calcium release in heart failure. PNAS 111:15196–201
    [Google Scholar]
  130. 130. 
    Uchida K, Lopatin AN. 2018. Diffusional and electrical properties of t-tubules are governed by their constrictions and dilations. Biophys. J. 114:437–49
    [Google Scholar]
  131. 131. 
    Kong CHT, Rog-Zielinska EA, Kohl P, Orchard CH, Cannell MB. 2018. Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes. PNAS 115:E7073–80
    [Google Scholar]
  132. 132. 
    Scardigli M, Crocini C, Ferrantini C, Gabbrielli T, Silvestri L et al. 2017. Quantitative assessment of passive electrical properties of the cardiac t-tubular system by FRAP microscopy. PNAS 114:5737–42
    [Google Scholar]
  133. 133. 
    Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P et al. 2010. β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–57
    [Google Scholar]
  134. 134. 
    Najafi A, Sequeira V, Kuster DW, van der Velden J. 2016. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur. J. Clin. Investig. 46:362–74
    [Google Scholar]
  135. 135. 
    Schobesberger S, Wright PT, Poulet C, Sanchez Alonso Mardones JL, Mansfield C et al. 2020. β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. eLife 9:e52221
    [Google Scholar]
  136. 136. 
    Subramanian H, Froese A, Jonsson P, Schmidt H, Gorelik J, Nikolaev VO 2018. Distinct submembrane localisation compartmentalises cardiac NPR1 and NPR2 signalling to cGMP. Nat. Commun. 9:2446
    [Google Scholar]
  137. 137. 
    Francis SH, Blount MA, Corbin JD. 2011. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91:651–90
    [Google Scholar]
  138. 138. 
    Gotz KR, Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE et al. 2014. Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes. Circ. Res. 114:1235–45
    [Google Scholar]
  139. 139. 
    Zaccolo M, Zerio A, Lobo MJ 2021. Subcellular organization of the cAMP signaling pathway. Pharmacol. Rev. 73:278–309
    [Google Scholar]
  140. 140. 
    Surdo NC, Berrera M, Koschinski A, Brescia M, Machado MR et al. 2017. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat. Commun. 8:15031
    [Google Scholar]
  141. 141. 
    Quick AP, Wang Q, Philippen LE, Barreto-Torres G, Chiang DY et al. 2017. SPEG (striated muscle preferentially expressed protein kinase) is essential for cardiac function by regulating junctional membrane complex activity. Circ. Res. 120:110–19SPEG interacts with RyR and JPH2 and regulates JPH2 phosphorylation, thus influencing dyadic structure.
    [Google Scholar]
  142. 142. 
    Campbell HM, Quick AP, Abu-Taha I, Chiang DY, Kramm CF et al. 2020. Loss of SPEG inhibitory phosphorylation of ryanodine receptor type-2 promotes atrial fibrillation. Circulation 142:1159–72
    [Google Scholar]
  143. 143. 
    Quan C, Du Q, Li M, Wang R, Ouyang Q et al. 2020. A PKB-SPEG signaling nexus links insulin resistance with diabetic cardiomyopathy by regulating calcium homeostasis. Nat. Commun. 11:2186
    [Google Scholar]
  144. 144. 
    Guo A, Wang Y, Chen B, Wang Y, Yuan J et al. 2018. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362:eaan3303Shows that the JPH2 cleavage product is a regulator of gene transcription and this may be protective.
    [Google Scholar]
  145. 145. 
    Lahiri SK, Quick AP, Samson-Couterie B, Hulsurkar M, Elzenaar I et al. 2020. Nuclear localization of a novel calpain-2 mediated junctophilin-2 C-terminal cleavage peptide promotes cardiomyocyte remodeling. Basic Res. Cardiol. 115:49
    [Google Scholar]
  146. 146. 
    Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N et al. 2017. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2:e91068
    [Google Scholar]
  147. 147. 
    Wang S, Zhou Y, Luo Y, Kan R, Chen J et al. 2021. SERCA2a ameliorates cardiomyocyte t-tubule remodeling via the calpain/JPH2 pathway to improve cardiac function in myocardial ischemia/reperfusion mice. Sci. Rep. 11:2037
    [Google Scholar]
  148. 148. 
    Aherrahrou Z, Schlossarek S, Stoelting S, Klinger M, Geertz B et al. 2016. Knock-out of nexilin in mice leads to dilated cardiomyopathy and endomyocardial fibroelastosis. Basic Res. Cardiol. 111:6
    [Google Scholar]
  149. 149. 
    Liu C, Spinozzi S, Chen JY, Fang X, Feng W et al. 2019. Nexilin is a new component of junctional membrane complexes required for cardiac t-tubule formation. Circulation 140:55–66Nexilin is a new interaction partner with JPH2 and RyR and is required for dyadic assembly.
    [Google Scholar]
  150. 150. 
    Yao L, Xie D, Geng L, Shi D, Huang J et al. 2018. REEP5 (receptor accessory protein 5) acts as a sarcoplasmic reticulum membrane sculptor to modulate cardiac function. J. Am. Heart Assoc. 7:e007205
    [Google Scholar]
  151. 151. 
    Xu M, Wu H-D, Li R-C, Zhang H-B, Wang M et al. 2012. Mir-24 regulates junctophilin-2 expression in cardiomyocytes. Circ. Res. 111:837–41
    [Google Scholar]
  152. 152. 
    Liu Y, Zhou K, Li J, Agvanian S, Caldaruse AM et al. 2020. In mice subjected to chronic stress, exogenous cBIN1 preserves calcium-handling machinery and cardiac function. JACC Basic Transl. Sci. 5:561–78
    [Google Scholar]
  153. 153. 
    Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE et al. 2016. Junctophilin-2 gene therapy rescues heart failure by normalizin RyR-mediated Ca2+ release. Int. J. Cardiol. 225:371–80
    [Google Scholar]
  154. 154. 
    Nikolova AP, Hitzeman TC, Baum R, Caldaruse AM, Agvanian S et al. 2018. Association of a novel diagnostic biomarker, the plasma cardiac bridging integrator 1 score, with heart failure with preserved ejection fraction and cardiovascular hospitalization. JAMA Cardiol 3:1206–10
    [Google Scholar]
  155. 155. 
    Chen B, Li Y, Jiang S, Xie Y-P, Guo A et al. 2012. β-Adrenergic receptor antagonists ameliorate myocyte t-tubule remodeling following myocardial infarction. FASEB J 26:2531–37
    [Google Scholar]
  156. 156. 
    An S, Gilani N, Huang Y, Muncan A, Zhang Y et al. 2019. Adverse transverse-tubule remodeling in a rat model of heart failure is attenuated with low-dose triiodothyronine treatment. Mol. Med. 25:53
    [Google Scholar]
  157. 157. 
    Li H, Lichter JG, Seidel T, Tomaselli GF, Bridge JH, Sachse FB. 2015. Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, t-tubules, and Ca2+ sparks produced by dyssynchronous heart failure. Circ. Heart Fail. 8:1105–14
    [Google Scholar]
  158. 158. 
    Whelton SP, Chin A, Xin X, He J. 2002. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136:493–503
    [Google Scholar]
  159. 159. 
    Turner MJ, Spina RJ, Kohrt WM, Ehsani AA. 2000. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension. J. Gerontol. A Biol. Sci. Med. Sci. 55:M245–51
    [Google Scholar]
  160. 160. 
    Dries E, Bito V, Lenaerts I, Antoons G, Sipido KR, Macquaide N. 2013. Selective modulation of coupled ryanodine receptors during microdomain activation of calcium/calmodulin-dependent kinase II in the dyadic cleft. Circ. Res. 113:1242–52
    [Google Scholar]
  161. 161. 
    Heinzel FR, Bito V, Volders PG, Antoons G, Mubagwa K, Sipido KR 2002. Spatial and temporal inhomogeneities during Ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circ. Res. 91:1023–30
    [Google Scholar]
  162. 162. 
    Sheehan KA, Blatter LA. 2003. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J. Physiol. 546:119–35
    [Google Scholar]
  163. 163. 
    Brette F, Rodriguez P, Komukai K, Colyer J, Orchard CH 2004. β-Adrenergic stimulation restores the Ca transient of ventricular myocytes lacking t-tubules. J. Mol. Cell. Cardiol. 36:265–75
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-061121-040148
Loading
/content/journals/10.1146/annurev-physiol-061121-040148
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error