1932

Abstract

The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-042021-012353
2022-01-03
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-042021-012353.html?itemId=/content/journals/10.1146/annurev-marine-042021-012353&mimeType=html&fmt=ahah

Literature Cited

  1. Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H et al. 2017. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat. Commun. 8:1756
    [Google Scholar]
  2. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT et al. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101
    [Google Scholar]
  3. Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA et al. 2021. Marine harmful algal blooms (HABs) in the United States: history, current status and future trends. Harmful Algae 121:101975
    [Google Scholar]
  4. Arteaga LA, Boss E, Behrenfeld MJ, Westberry TK, Sarmiento JL. 2020. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11:10
    [Google Scholar]
  5. Bach LT, Lohbeck KT, Reusch TBH, Riebesell U. 2018. Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nat. Ecol. Evol. 2:611–13
    [Google Scholar]
  6. Barofsky A, Vidoudez C, Pohnert G. 2009. Metabolic profiling reveals growth stage variability in diatom exudates. Limnol. Oceanogr. Methods 7:382–90
    [Google Scholar]
  7. Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH et al. 2020. Laminarin is a major molecule in the marine carbon cycle. PNAS 117:6599–607
    [Google Scholar]
  8. Bedford J, Ostle C, Johns DG, Atkinson A, Best M et al. 2020. Lifeform indicators reveal large-scale shifts in plankton across the North-West European shelf. Glob. Change Biol. 26:3482–97
    [Google Scholar]
  9. Bell W, Mitchell R. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143:265–78
    [Google Scholar]
  10. Belmonte G, Rubino F. 2019. Resting cysts from coastal marine plankton. Oceanogr. Mar. Biol. Annu. Rev. 57:1–88
    [Google Scholar]
  11. Bestion E, Barton S, García FC, Warfield R, Yvon-Durocher G. 2020. Abrupt declines in marine phytoplankton production driven by warming and biodiversity loss in a microcosm experiment. Ecol. Lett. 23:457–66
    [Google Scholar]
  12. Bidle KD. 2016. Programmed cell death in unicellular phytoplankton. Curr. Biol. 26:R594–607
    [Google Scholar]
  13. Bigalke A, Meyer N, Papanikolopoulou LA, Wiltshire KH, Pohnert G. 2019. The algicidal bacterium Kordia algicida shapes a natural plankton community. Appl. Environ. Microbiol. 85:e02779
    [Google Scholar]
  14. Bigalke A, Pohnert G. 2019. Algicidal bacteria trigger contrasting responses in model diatom communities of different composition. MicrobiologyOpen 8:e00818
    [Google Scholar]
  15. Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. 2020. The planktonic protist interactome: Where do we stand after a century of research?. ISME J 14:544–59
    [Google Scholar]
  16. Bondoc KGV, Heuschele J, Gillard J, Vyverman W, Pohnert G. 2016. Selective silicate-directed motility in diatoms. Nat. Commun. 7:e10540
    [Google Scholar]
  17. Bondoc KGV, Lembke C, Vyverman W, Pohnert G. 2019. Selective chemoattraction of the benthic diatom Seminavis robusta to phosphate but not to inorganic nitrogen sources contributes to biofilm structuring. MicrobiologyOpen 8:e694
    [Google Scholar]
  18. Bork P, Bowler C, de Vargas C, Gorsky G, Karsenti E, Wincker P. 2015. Tara Oceans studies plankton at planetary scale. Science 348:873
    [Google Scholar]
  19. Bravo I, Figueroa RI. 2014. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2:11–32
    [Google Scholar]
  20. Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. 2019. Chemical ecology of the marine plankton. Nat. Prod. Rep. 36:1093–116
    [Google Scholar]
  21. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG et al. 2015. Patterns and ecological drivers of ocean viral communities. Science 348:1261498
    [Google Scholar]
  22. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12:686–98
    [Google Scholar]
  23. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. 2021. Marine natural products. Nat. Prod. Rep. 38:362–413
    [Google Scholar]
  24. Chambouvet A, Morin P, Marie D, Guillou L 2008. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–57
    [Google Scholar]
  25. Chekan JR, Fallon TR, Moore BS 2020. Biosynthesis of marine toxins. Curr. Opin. Chem. Biol. 59:119–29
    [Google Scholar]
  26. Choi CJ, Brosnahan ML, Sehein TR, Anderson DM, Erdner DL 2017. Insights into the loss factors of phytoplankton blooms: the role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol. Oceanogr. 62:1742–53
    [Google Scholar]
  27. Cirri E, Pohnert G 2019. Algae–bacteria interactions that balance the planktonic microbiome. New Phytol 223:100–6
    [Google Scholar]
  28. Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL. 2018. Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends Microbiol 26:955–65
    [Google Scholar]
  29. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93
    [Google Scholar]
  30. de Vargas C, Audic S, Henry N, Decelle J, Mahe F et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605
    [Google Scholar]
  31. Ellegaard M, Ribeiro S. 2018. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks. .’ Biol. Rev. Camb. Philos. Soc. 93:166–83
    [Google Scholar]
  32. Elovaara S, Degerlund M, Franklin DJ, Kaartokallio H, Tamelander T. 2020. Seasonal variation in estuarine phytoplankton viability and its relationship with carbon dynamics in the Baltic Sea. Hydrobiologia 847:2485–501
    [Google Scholar]
  33. Falkowski PG. 1994. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39:235–58
    [Google Scholar]
  34. Ferrer-Gonzalez FX, Widner B, Holderman NR, Glushka J, Edison AS et al. 2021. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J 15:762–73
    [Google Scholar]
  35. Figueroa RI, Estrada M, Garces E. 2018. Life histories of microalgal species causing harmful blooms: haploids, diploids and the relevance of benthic stages. Harmful Algae 73:44–57
    [Google Scholar]
  36. Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH et al. 2021. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J 15:2336–50
    [Google Scholar]
  37. Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E et al. 2020. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology 101:e02900
    [Google Scholar]
  38. Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R et al. 2016. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22:299–309
    [Google Scholar]
  39. Fu H, Uchimiya M, Gore J, Moran MA. 2020. Ecological drivers of bacterial community assembly in synthetic phycospheres. PNAS 117:3656–62
    [Google Scholar]
  40. Gallo C, d'Ippolito G, Nuzzo G, Sardo A, Fontana A. 2017. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat. Commun. 8:1292
    [Google Scholar]
  41. Gao C, Fernandez VI, Lee KS, Fenizia S, Pohnert G et al. 2020. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11:1942
    [Google Scholar]
  42. Garcés E, Alacid E, Reñé A, Petrou K, Simó R. 2013. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J 7:1065–68
    [Google Scholar]
  43. Gardes A, Iversen MH, Grossart HP, Passow U, Ullrich MS 2011. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5:436–45
    [Google Scholar]
  44. Gebser B, Thume K, Steinke M, Pohnert G. 2020. Phytoplankton-derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. MicrobiologyOpen 9:e1014
    [Google Scholar]
  45. Gerphagnon M, Agha R, Martin-Creuzburg D, Bec A, Perriere F et al. 2019. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 21:949–58
    [Google Scholar]
  46. Gillard J, Frenkel J, Devos V, Sabbe K, Paul C et al. 2013. Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew. Chem. Int. Ed. 52:854–57
    [Google Scholar]
  47. Girault M, Siano R, Labry C, Latimier M, Jauzein C et al. 2021. Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates. ISME J 15:2057–69
    [Google Scholar]
  48. Graff JR, Rines JEB, Donaghay PL. 2011. Bacterial attachment to phytoplankton in the pelagic marine environment. Mar. Ecol. Prog. Ser. 441:15–24
    [Google Scholar]
  49. Gralka M, Szabo R, Stocker R, Cordero OX. 2020. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30:R1176–88
    [Google Scholar]
  50. Grant MAA, Kazamia E, Cicuta P, Smith AG 2014. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J 8:1418–27
    [Google Scholar]
  51. Guadayol O, Mendonca T, Segura-Noguera M, Wright AJ, Tassieri M, Humphries S 2021. Microrheology reveals microscale viscosity gradients in planktonic systems. PNAS 118:e2011389118
    [Google Scholar]
  52. Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. 2017. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565–89
    [Google Scholar]
  53. Haraldsson M, Gerphagnon M, Bazin P, Colombet J, Tecchio S et al. 2018. Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. ISME J 12:1008–20
    [Google Scholar]
  54. Hassett BT, Gradinger R. 2016. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18:2001–9
    [Google Scholar]
  55. Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G et al. 2019. Global trends in marine plankton diversity across kingdoms of life. Cell 179:1084–97 e21
    [Google Scholar]
  56. Jackrel SL, Yang JW, Schmidt KC, Denef VJ. 2021. Host specificity of microbiome assembly and its fitness effects in phytoplankton. ISME J 15:774–88
    [Google Scholar]
  57. Johnson MD, Edwards BR, Beaudoin DJ, Van Mooy BAS, Vardi A. 2020. Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ. Microbiol. 22:629–45
    [Google Scholar]
  58. Kenitz KM, Orenstein EC, Roberts PLD, Franks PJS, Jaffe JS et al. 2020. Environmental drivers of population variability in colony-forming marine diatoms. Limnol. Oceanogr. 65:2515–28
    [Google Scholar]
  59. Kirchman DL. 2016. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8:285–309
    [Google Scholar]
  60. Koch F, Hattenrath-Lehmann TK, Goleski JA, Sañudo-Wilhelmy S, Fisher NS, Gobler CJ. 2012. Vitamin B1 and B12 uptake and cycling by plankton communities in coastal ecosystems. Front. Microbiol. 3:11
    [Google Scholar]
  61. Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D et al. 2020. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci. Adv. 6:eaba4137
    [Google Scholar]
  62. Kuhlisch C, Althammer J, Sazhin AF, Jakobsen HH, Nejstgaard JC, Pohnert G. 2020. Metabolomics-derived marker metabolites to characterize Phaeocystis pouchetii physiology in natural plankton communities. Sci. Rep. 10:20444
    [Google Scholar]
  63. Kuhlisch C, Schleyer G, Shahaf N, Vincent F, Schatz D, Vardi A. 2021. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Sci. Adv 7:eabf4680
    [Google Scholar]
  64. Landa M, Burns AS, Roth SJ, Moran MA 2017. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J 11:2677–90
    [Google Scholar]
  65. Lauritano C, Romano G, Roncalli V, Amoresano A, Fontanarosa C et al. 2016. New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. Harmful Algae 55:221–29
    [Google Scholar]
  66. Legrand C, Rengefors K, Fistarol GO, Granéli E. 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42:406–19
    [Google Scholar]
  67. Lembke C, Stettin D, Speck F, Ueberschaar N, De Decker S et al. 2018. Attraction pheromone of the benthic diatom Seminavis robusta: studies on structure-activity relationships. J. Chem. Ecol. 44:354–63
    [Google Scholar]
  68. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S et al. 2015. Determinants of community structure in the global plankton interactome. Science 348:1262073
    [Google Scholar]
  69. Limberger R, Fussmann GF. 2021. Adaptation and competition in deteriorating environments. Proc. R. Soc. B 288:20202967
    [Google Scholar]
  70. Long JD, Smalley GW, Barsby T, Anderson JT, Hay ME 2007. Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. PNAS 104:10512–17
    [Google Scholar]
  71. Mayali X, Azam F. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51:139–44
    [Google Scholar]
  72. Mestre M, Höfer J. 2021. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol 29:482–92
    [Google Scholar]
  73. Meyer N, Bigalke A, Kaulfuß A, Pohnert G. 2017. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol. Rev. 41:880–99
    [Google Scholar]
  74. Meyer N, Rettner J, Werner M, Werz O, Pohnert G 2018. Algal oxylipins mediate the resistance of diatoms against algicidal bacteria. Mar. Drugs 16:e486
    [Google Scholar]
  75. Mojica KDA, Brussaard CPD. 2014. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol. Ecol. 89:495–515
    [Google Scholar]
  76. Mönnich J, Tebben J, Bergemann J, Case R, Wohlrab S, Harder T 2020. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J 14:1614–25
    [Google Scholar]
  77. Moore SK, Bill BD, Hay LR, Emenegger J, Eldred KC et al. 2015. Factors regulating excystment of Alexandrium in Puget Sound, WA, USA. Harmful Algae 43:103–10
    [Google Scholar]
  78. Moran MA, Durham BP. 2019. Sulfur metabolites in the pelagic ocean. Nat. Rev. Microbiol. 17:665–78
    [Google Scholar]
  79. Morffy N, Strader LC. 2020. Old Town Roads: routes of auxin biosynthesis across kingdoms. Curr. Opin. Plant Biol. 55:21–27
    [Google Scholar]
  80. Morono Y, Ito M, Hoshino T, Terada T, Hori T et al. 2020. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11:e3626
    [Google Scholar]
  81. Muller-Navarra DC. 2008. Food web paradigms: the biochemical view on trophic interactions. Int. Rev. Hydrobiol. 93:489–505
    [Google Scholar]
  82. NASA (Natl. Aeronaut. Space Adm.) 2020. Beguiling bloom in the Baltic Sea. NASA Earth Observatory. https://earthobservatory.nasa.gov/images/147135/beguiling-bloom-in-the-baltic-sea
    [Google Scholar]
  83. Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA et al. 2018. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J 12:2417–32
    [Google Scholar]
  84. Needham DM, Fuhrman JA. 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1:e16005
    [Google Scholar]
  85. Neuhauser S, Kirchmair M, Bulman S, Bass D. 2014. Cross-kingdom host shifts of phytomyxid parasites. BMC Evol. Biol. 14:33
    [Google Scholar]
  86. Pančić M, Kiørboe T. 2018. Phytoplankton defence mechanisms: traits and trade-offs. Biol. Rev. 93:1269–303
    [Google Scholar]
  87. Pelusi A, De Luca P, Manfellotto F, Thamatrakoln K, Bidle KD, Montresor M. 2021. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol 229:2251–59
    [Google Scholar]
  88. Platt T, White GN, Zhai L, Sathyendranath S, Roy S 2009. The phenology of phytoplankton blooms: ecosystem indicators from remote sensing. Ecol. Model. 220:3057–69
    [Google Scholar]
  89. Pohnert G. 2005. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946–59
    [Google Scholar]
  90. Pohnert G, Steinke M, Tollrian R. 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22:198–204
    [Google Scholar]
  91. Poulson-Ellestad KL, Jones CM, Roy J, Viant MR, Fernandez FM et al. 2014. Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. PNAS 111:9009–14
    [Google Scholar]
  92. Råberg L, Alacid E, Garces E, Figueroa R 2014. The potential for arms race and Red Queen coevolution in a protist host-parasite system. Ecol. Evol. 4:4775–85
    [Google Scholar]
  93. Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. 2019. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17:284–94
    [Google Scholar]
  94. Rengefors K, Kremp A, Reusch TBH, Wood AM. 2017. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J. Plankton Res. 39:165–79
    [Google Scholar]
  95. Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M 2011. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2:311
    [Google Scholar]
  96. Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S et al. 2014. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26:2689–707
    [Google Scholar]
  97. Ruocco N, Albarano L, Esposito R, Zupo V, Costantini M, Ianora A 2020. Multiple roles of diatom-derived oxylipins within marine environments and their potential biotechnological applications. Mar. Drugs 18:25
    [Google Scholar]
  98. Russo E, d'Ippolito G, Fontana A, Sarno D, D'Alelio D et al. 2020. Density-dependent oxylipin production in natural diatom communities: possible implications for plankton dynamics. ISME J 14:164–77
    [Google Scholar]
  99. Ryabov A, Kerimoglu O, Litchman E, Olenina I, Roselli L et al. 2021. Shape matters: the relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24:847–61
    [Google Scholar]
  100. Saito K, Drgon T, Krupatkina DN, Drgonova J, Terlizzi DE et al. 2007. Effect of biotic and abiotic factors on in vitro proliferation, encystment, and excystment of Pfiesteria piscicida. Appl. Environ. Microbiol. 73:6410–20
    [Google Scholar]
  101. Satake M, Honma D, Watanabe R, Oshima Y. 2019. Alexandrolide, a diatom growth inhibitor isolated from the dinoflagellate Alexandrium catenella. Tetrahedron Lett 60:1341–44
    [Google Scholar]
  102. Schatz D, Rosenwasser S, Malitsky S, Wolf SG, Feldmesser E, Vardi A 2017. Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat. Microbiol. 2:1485–92
    [Google Scholar]
  103. Schleyer G, Vardi A. 2020. Algal blooms. Curr. Biol. 30:R1116–18
    [Google Scholar]
  104. Scholz B, Kupper FC, Vyverman W, Olafsson HG, Karsten U. 2017. Chytridiomycosis of marine diatoms—the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs 15:e26
    [Google Scholar]
  105. Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C et al. 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 5:e17473
    [Google Scholar]
  106. Selander E, Berglund EC, Engström P, Berggren F, Eklund J et al. 2019. Copepods drive large-scale trait-mediated effects in marine plankton. Sci. Adv. 5:eaat5096
    [Google Scholar]
  107. Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G, Pavia H 2015. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. PNAS 112:6395–400
    [Google Scholar]
  108. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3:331–35
    [Google Scholar]
  109. Seyedsayamdost MR, Wang RR, Kolter R, Clardy J. 2014. Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J. Am. Chem. Soc. 136:15150–53
    [Google Scholar]
  110. Seymour JR, Amin SA, Raina JB, Stocker R 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2:17065
    [Google Scholar]
  111. Seymour JR, Simo R, Ahmed T, Stocker R 2010. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–45
    [Google Scholar]
  112. Sheik AR, Brussaard CP, Lavik G, Lam P, Musat N et al. 2014. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J 8:212–25
    [Google Scholar]
  113. Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A 2016. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J 10:1742–54
    [Google Scholar]
  114. Shibl AA, Isaac A, Ochsenkuhn MA, Cardenas A, Fei C et al. 2020. Diatom modulation of select bacteria through use of two unique secondary metabolites. PNAS 117:27445–55
    [Google Scholar]
  115. Sison-Mangus MP, Jiang S, Tran KN, Kudela RM 2014. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J 8:63–76
    [Google Scholar]
  116. Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Barreiro Felpeto A et al. 2021. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Sci. Total Environ. 773:145681
    [Google Scholar]
  117. Smriga S, Fernandez VI, Mitchell JG, Stocker R 2016. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. PNAS 113:1576–81
    [Google Scholar]
  118. Sommer U, Adrian R, Domis LDS, Elser JJ, Gaedke U et al. 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43:429–48
    [Google Scholar]
  119. Sonnenschein EC, Phippen CBW, Bentzon-Tilia M, Rasmussen SA, Nielsen KF, Gram L. 2018. Phylogenetic distribution of roseobacticides in the Roseobacter group and their effect on microalgae. Environ. Microbiol. Rep. 10:383–93
    [Google Scholar]
  120. Sonnenschein EC, Syit DA, Grossart HP, Ullrich MS. 2012. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78:6900–7
    [Google Scholar]
  121. Stoecker DK, Hansen PJ, Caron DA, Mitra A 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311–35
    [Google Scholar]
  122. Sumper M, Berg E, Wenzl S, Godl K 1993. How a sex pheromone might act at a concentration below 10−16 M. EMBO J 12:831–36
    [Google Scholar]
  123. Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D et al. 2020. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18:428–45
    [Google Scholar]
  124. Sundqvist L, Godhe A, Jonsson PR, Sefbom J. 2018. The anchoring effect—long-term dormancy and genetic population structure. ISME J 12:2929–41
    [Google Scholar]
  125. Taylor JD, Cunliffe M. 2016. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–28
    [Google Scholar]
  126. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–11
    [Google Scholar]
  127. Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M et al. 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5:e11888
    [Google Scholar]
  128. Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11:27–37
    [Google Scholar]
  129. Uitz J, Claustre H, Gentili B, Stramski D 2010. Phytoplankton class-specific primary production in the world's oceans: seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24:GB3016
    [Google Scholar]
  130. Vallet M, Baumeister TUH, Kaftan F, Grabe V, Buaya A et al. 2019. The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom. Nat. Commun. 10:4938
    [Google Scholar]
  131. van Creveld SG, Rosenwasser S, Schatz D, Koren I, Vardi A 2015. Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME J 9:385–95
    [Google Scholar]
  132. Van Donk E, Ianora A, Vos M 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668:3–19
    [Google Scholar]
  133. Vardi A, Bidie KD, Kwityn C, Hirsh DJ, Thompson SM et al. 2008. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr. Biol. 18:895–99
    [Google Scholar]
  134. Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE et al. 2009. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326:861–65
    [Google Scholar]
  135. Vidoudez C, Casotti R, Bastianini M, Pohnert G. 2011. Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Mar. Drugs 9:500–13
    [Google Scholar]
  136. Vidoudez C, Pohnert G. 2008. Growth phase specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 30:1305–13
    [Google Scholar]
  137. Vidoudez C, Pohnert G. 2012. Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8:654–69
    [Google Scholar]
  138. Vincent F, Bowler C. 2020. Diatoms are selective segregators in global ocean planktonic communities. mSystems 5:e00444-19
    [Google Scholar]
  139. Vincent F, Sheyn U, Porat Z, Schatz D, Vardi A. 2021. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. PNAS 118:e2021586118
    [Google Scholar]
  140. von Borzyskowski LS, Severi F, Kruger K, Hermann L, Gilardet A et al. 2019. Marine proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature 575:500–4
    [Google Scholar]
  141. Wadhams GH, Armitage JP. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:1024–37
    [Google Scholar]
  142. Wang HL, Chen F, Mi TZ, Liu Q, Yu ZG, Zhen Y 2020. Responses of marine diatom Skeletonema marinoi to nutrient deficiency: programmed cell death. Appl. Environ. Microbiol. 86:e02460-19
    [Google Scholar]
  143. Weithoff G, Beisner BE. 2019. Measures and approaches in trait-based phytoplankton community ecology – from freshwater to marine ecosystems. Front. Mar. Sci. 6:40
    [Google Scholar]
  144. Wells ML, Karlson B, Wulff A, Kudela R, Trick C et al. 2020. Future HAB science: directions and challenges in a changing climate. Harmful Algae 91:101632
    [Google Scholar]
  145. Wheeler JD, Secchi E, Rusconi R, Stocker R 2019. Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu. Rev. Cell Dev. Biol. 35:213–37
    [Google Scholar]
  146. Winder M, Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698:5–16
    [Google Scholar]
  147. Wolfram S, Nejstgaard JC, Pohnert G. 2014. Accumulation of polyunsaturated aldehydes in the gonads of the copepod Acartia tonsa revealed by tailored fluorescent probes. PLOS ONE 9:e112522
    [Google Scholar]
  148. Zhong J, Guo Y, Liang Z, Huang Q, Lu H et al. 2021. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci. Total Environ. 771:145167
    [Google Scholar]
/content/journals/10.1146/annurev-marine-042021-012353
Loading
/content/journals/10.1146/annurev-marine-042021-012353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error