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Challenges hindering memristive
neuromorphic hardware from going
mainstream
Gina C. Adam1, Ali Khiat2 & Themis Prodromakis 2

Memristive devices have elicited intense research in the past decade thanks to
their inherent low voltage operation, multi-bit storage and cost-effective man-
ufacturability. Nonetheless, several outstanding performance and manufactur-
ability challenges have prevented the widespread industry adoption of redox-
based memristive matrices. Here, we discuss these challenges in terms of key
metrics and propose a roadmap towards realizing competitive memristive-based
neuromorphic processing systems.

The promise of redox memristors
Heterogeneous hardware that combines traditional digital circuitry with two-terminal analog
memory devices, promises to handle the Zettabyte storage and processing requirements of
modern applications such as the Internet of Things (IoT) and Artificial Intelligence (AI). Several
emerging device concepts, based on electrochemical metallization, phase change, and redox
phenomena have been intensely explored. This work led to some successful commercial pro-
ducts, like Adesto’s Moneta electrochemical metallization memory for low-energy applications
and Intel-Micron’s phase change memory Optane for storage class memory. Despite this fact, the
most highly sought application nowadays, namely non-volatile neuromorphic processors, has yet
to become industrially feasible.

We believe that redox memristive memory will be the technology to fuel the AI era in the
upcoming decades by enabling competitive implementations of neuromorphic processors. These
switches can facilitate the energy and space efficiency required for emulating synaptic weights—
the programmable connections that equip a neuromorphic system with its learning and memory
capabilities. The synaptic weights can be implemented with commercially available technologies,
but they typically require tens of devices for emulating a single synapse, which renders large-
scale systems impractical. For comparison, redox memristive cells can outshine by 2–3 orders of
magnitude in density and lower energy consumption of the implementations featuring more
mature technologies1. To emulate the complexity and ultra-low power consumption of biological
neural networks, neuromorphic hardware platforms have to deliver an ultra-high density
(>1 Tb/cm2) and energy efficient (<10 fJ/operation) solution. If we want to implement large
neural networks with billions of synaptic devices, resistive switches are particularly suited thanks
to three disruptive attributes: low-voltage multi-bit programmability, an inherent non-volatility
of their resistance state, and a scalable two-terminal structure appropriate for matrix integration.
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The physics of resistive switching is on our side from an
energy-consumption perspective, since in theory the state of the
device can change through the movement of just a few ions under
a very low voltage. Once the voltage is removed, the ions halt in
place and the state is retained without any further use of energy.
The fine synaptic programmability is a key element for neuro-
morphic algorithms and redox resistive devices have achieved the
best analog capacity to date (>100 discernible states per single
cell)2. Redox resistive devices are bipolar so a desired state can be
accessed either during set or reset, which decreases the latency to
program the matrix. Redox memristors typically report the lowest
energy consumption/switching among emerging analog memory
solutions, ~10fJ3. Moreover, the switching time has been shown
to be as low as 85 ps4 for nitride materials.

An ideal neuromorphic platform would take advantage of these
properties in an integrated fashion. Such a system would have
hundreds of layers of resistive switching matrices integrated over
traditional digital circuitry to achieve high performance at a low
manufacturing cost.

Performance vs manufacturability challenges
This bold dream has fueled intense research in the field. Sig-
nificant progress has been made, but in all honesty, at a slower
pace than anticipated. No miracle material stack that leads to the
perfect device properties has been discovered yet. Several per-
formance and manufacturability challenges prevent industry
adoption. Yet we are optimistic that our community will
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Fig. 1 Matrix-level metrics and manufacturing choices impacting them. a–c Variability metric. The variability is a measure of the spread of device
performance (in this example, the two extreme resistance states RON and ROFF) in a memristive matrix as defined based on the standard deviation and the
means of the resistance distributions (σ/μ). The variability of the resistance states RON and ROFF across a matrix is heavily influenced by a the choice of
active material and of the material stack (e.g., single material HfOx vs. bilayer HfOx+ TaOx)5, 12; b the device scaling as determined by the smallest feature
dimension (also known as critical dimension or CD);6 and c the presence of a series selector/cell which has its own variability profile8. The variability
results presented in a–c are extracted from different studies so they have different orders of magnitude depending on the manufacturing process used. d–f
Latency metric. The latency is a measure of the delay in accessing the desired device, delay caused by the charging and discharging of the wires. d Impact
of the wire downscaling on latency and read margin, which is a measure of the capability to discriminate between the two extreme states (RON and ROFF) of
the memristive device13. e Practical matrix size limited by latency vs. the density (number of devices in a μm2) allowed by the critical dimension of the
manufacturing process. f The impact of the device / selector non-linearity on latency14. g–i Density metric discussed from the perspective of the most
common device designs—crosspoint, plug-via and vertical. g The availability of materials suitable for each device design, given aspects such as uniformity,
conformal deposition, etc. h The state-of-the-art scalability for each design (crosspoint: 2 nm CD/12 nm pitch9, plug-via ~30 nm/100 nm15, vertical
structure has yet to be optimized for scalability12). i State-of-the-art stackability for each design and its approximate cost per matrix layer (represented by
the relative size of the bubble)
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overcome these challenges and develop a resistive switching
technology of unparalleled performance for the next generation of
neuromorphic hardware.

Variability. While neuromorphic computation is considered to
be resilient to hardware defects, memristor variability is costly. If
each device performs slightly different and its characteristics vary
in time, programming to a desired state becomes a personalized
endeavor. This approach is not feasible for training large matrices
with billions of devices, as it consumes time, energy, and chip
real-estate for supporting circuitry.

High-density integration and mass production will not be
possible until the variability is fixed. And fixing it is challenging.
This is a new technology that requires significant investment for
refining the design and manufacturing process. More alarming is,
however, the intrinsic stochastic nature of the switching. The
resistive switching technology has been extensively shown in
amorphous or polycrystalline materials. These materials have the
advantage of low temperature deposition, so multiple matrix
layers can be manufactured without disturbing the digital
circuitry below. However, their uncontrolled high density of
defects induces a high degree of variability. The choice of
materials plays a critical role5 (Fig. 1a). Extreme scaling has also
been shown to reduce variability, probably through confining the
area where switching occurs6 (Fig. 1b). In the meantime, more
complex cells, like the multi-memristor cell used to emulate a
single synaptic unit7, can help alleviate some of these challenges,
but at the cost of lower integration density.

Latency. While variability limits the size of the system that we can
build, this is not our only challenge. The practical size of the
matrix is limited also by the accessibility of individual devices in
the matrix. The line resistance can determine a non-negligible
voltage drop across the wires, increasing the latency (the time it
takes to access a device) and the energy consumption and
affecting the write/read margin (Fig. 1d). Sneak paths are another
issue that aggravates with increased matrix size. A highly non-
linear selecting device (called selector) in series with each mem-
ristor offers increased accessibility, as higher nonlinearity is
desirable for reduced latency (Fig. 1f). Nevertheless, selectors have
their own variability that further adds to the deterioration of
performance8 (Fig. 1c). These issues become more acute with
drastic technology scaling and limit the realistic matrix size
(Fig. 1e).

Density. Despite the abovementioned limitations, the promise for
an extremely small footprint provides a clear advantage by
comparison with more mature technologies like flash memory.
Various designs can be used, with the crosspoint, plug-via and
vertical topologies being the most explored. Each has its merits
and challenges, requiring trade-offs in scalability, stackability,
selector integration capabilities and cost effectiveness. The
crosspoint is the most common, due to easy manufacturing with a
wide range of materials (Fig. 1g) and its extreme scalability, down
to ~2 nm for an estimated density of >0.7Tb/cm2 9 (Fig. 1h).
However, it has the major disadvantage of the active material
stepping over the bottom line which can cause uncontrolled film
thinning, increased device variability, or even electrodes shorting.
The plug-via design has no step, but needs the etching of the via
which damages the active film, increases the variability and
requires additional masks. The vertical design is, by comparison,
highly cost effective (Fig. 1i). The number of masks is indepen-
dent of the number of layers, similar to the three-dimensional
flash technology10. However, the requirement for conformal
vertical deposition limits the choice of materials and of selector
integration.

While the quest for the densest matrix design is admirable, a
memristor-based neuromorphic processor is more than mem-
ristor matrices. Additional circuitry is typically required for
selection, reading and programming of cells. Ideally, this
circuitry would be implemented entirely below the memristor
matrix stack for attaining highest chip space occupancy.
However, high speed programming requirements can increase
the circuitry footprint, thus straying away from the ideal
density11.

Reaching technological feasibility
Driven by its potential for extreme density, resistive
switching matrices will benefit from the latest advances in
nanofabrication, like the extreme ultraviolet lithography
(EUV) which has already shown <10 nm half pitch lines.
However, the industry can benefit from its technological
potential only when the issues of variability and latency are
solved, so that should be the short-term focus in our opinion
(Fig. 2).

Tackling them requires a data-driven approach to accelerate
the understanding and gaining control over the physics of
switching, the materials and the manufacturing process. The
necessity of having low access resistance and selector devices
introduces extra complexity, requiring designs with higher
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Fig. 2 Roadmap for manufacturing challenges and possible approaches to accelerate progress. Understanding the underlying factors behind variability can
be enabled by data-driven research through lab-to-fab designs and very large-scale integration of memristive matrices with traditional digital access
circuitry. Benchmarking (performance metrics, standardized device/matrix sizes, methods of testing, etc) will ensure comparable results between groups.
Ultimately, once variability and latency issues are tackled, the technology development will benefit from advanced nano-prototyping techniques, such as
extreme ultraviolet lithography, for cost-effective scalability and stackability
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number of manufacturing steps and state-of-the-art cleanroom
equipment. The characterization of large matrices is resource
intensive as well, involving custom data acquisition set-ups.
The solution is the integration of memristor matrices with the
digital read/write circuitry which requires foundry material
compatibility and sustained academia-industrial partnerships.
Appropriate performance benchmarking amongst distinct
materials, standardized device/matrix sizes and methods of
testing are also needed to ensure reproducible results across
different labs. A repository of these large datasets would
strengthen the research capabilities of the community, enabling
accurate device modeling and system-level simulations.

In the coming years, memristive neuromorphic hardware will
likely flourish in select embedded applications based on
medium-sized matrices suitable for cost-effective training off-
site and pre-deployment. Complex systems would take longer
to reach commercial maturity since they require larger mem-
ristive matrices with lower density of imperfections appropriate
for fast on-site continuous learning. Ultimately though, the
balance between system-level performance vs. manufacturing
cost will be what drives widespread adoption.
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